| 研究生: |
陳怡惠 Chen, Yi-Hui |
|---|---|
| 論文名稱: |
藉由假絲酵母玫瑰脂脢對於1-苯基-1,3-丁二醇之四個立體異構物進行動力解析:
具有高度的位向及立體選擇性之反應 Kinetic Resolution of Four Stereoisomers of 1-Phenylbutane-1,3-diol by Candida Rugosa Lipase: Highly Regio- and Stereoselectively reaction |
| 指導教授: |
宋光生
Sung, Kuangsen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 酵素 、動力解析 |
| 外文關鍵詞: | enzyme, kinetic resolution |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脂脢為普遍使用的酵素之一,其可以催化不對稱合成,得到高純度的不對稱化合物。脂脢對於受質具有寬的特異性及高度的立體選擇性,使得它有效地被有機化學家所使用。在此,我使用脂脢之一的假絲酵母玫瑰脂脢,進行1-苯基-1,3-丁二醇(1)高度地位向及立體選擇性的轉酯化反應。對於(±)-syn-1使用假絲酵母玫瑰脂脢的動力解析,得到高度立體選擇性的(+)-syn-2及(-)-syn-3 (式1);相對於(±)-anti-1的動力解析,則得到高度立體選擇性的(+)-anti-3及(-)-anti-1 (式2)。syn-2發生分子內之轉酯化反應較syn-3快,故(-)-syn-3得到較低的ee值。然而,在anti-3之反應當中沒有發生分子內的轉酯化反應。
Lipases, which are one of the most commonly used enzymes, catalyzed asymmetric synthesis to afford high purely chiral compounds. Their broad substrate specificity and high stereoselectivity make them useful to the organic chemist. Herein I report highly regio- and stereoselective transesterification of 1-phenylbutane-1,3-diol (1) by Candida rugosa lipase (CRL) which is one of the most useful lipases. Kinetic resolution of (±)-syn-1 by CRL generated (+)-syn-2 and (-)-syn-3 highly stereoselectively, whereas kinetic resolution of (±)-anti-1 by CRL produced (+)-anti-3 and (-)-anti-1 highly stereoselectively. Intramolecular transesterification occurred in syn-2 faster than that in syn-3, resulting in less e.e. value of (-)-syn-3. However, there is no intramolecular transesterification found in anti-3.
1. Ghanem, A.; Aboul-Enein, H. Y. Tetrahedron: Asymmetry 2004, 15, 3331-3351.
2. Pawlak, J.; Nakanishi, K.; Iwashita, T.; Borowski, E. J. Org. Chem. 1987, 52, 2896-2901.
3. Schreiber, S. L.; Goulet, M. T. J. Am. Chem. Soc. 1987, 109, 8120-8122.
4. (a) Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.; Takaya, H. J. Am. Chem. Soc. 1988, 110, 629-631. (b) Chan, T. H.; New, K. T. J. Org. Chem. 1992, 57, 6107-6111. (c) Takeshita, M.; Miura, M.; Unuma, Y. J. Chem. Soc. Perkin Trans. 1 1993, 2901-2905. (d) Bachki, A.; Foubelo, F.; Yus, M. Tetrahedron: Asymmetry 1995, 6, 1907-1910. (e) Barbero, A.; Blakemore, D. C.; Fleming, I.; Wesley, R. N. J. Chem. Soc. Perkin Trans. 1 1997, 1329-1352. (f) Chopade, P. R.; Davis, T. A.; Prasad, E.; Flowers, R. A. II Org. Lett. 2004, 6, 2685-2688.
5. (a) Ahmad, K.; Taneja, S. C.; Singh, A. P.; Kapoor, M.; Hassan, R.; Verma, V.; Qazi, G. N. Tetrahedron: Asymmetry 2004, 15, 1685-1692. (b) Levayer, F.; Rabiller, C.; Tellier, C. Tetrahedron: Asymmetry 1995, 6, 1675-1682. (c) Edin, M.; Backvall, J.-E. J. Org. Chem. 2003, 68, 2216-2222.
6. (a) Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis, Wiley-VCH: Weinheim, 1999. (b) Drauz, K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis, Wiley-VCH: Wienheim, 2002. (c) Hanefeld, U. Org. Biomol. Chem. 2003, 1, 2405-2415. (d) Carrea, G.; Riva, S. Angew. Chem. Int. Ed. Engl. 2000, 39, 2226-2254. (h) Ghanem, A.; Aboul-Enein, H. Y. Tetrahedron: Asymmetry 2004, 15, 3331-3351.
7. Isowa, Y.,Ohmori, M., Ichikawa, Y., Kihara, K.,Oyama, K., Satoh, H., Nishimura, S. Tetrahedron Lett. 1979, 2611-2612.
8. Morgan, B., Stockwell, B. R., Zaks, A., Andrews, D. R., Klesse, R. J. Org. Chem. 1997, 62, 7736-7743.
9. Nair, M. S.; Joly, S. Tetrahedron: Asymmetry 2000, 11, 2049-2051.
10.Alicia, M.; Covadonga, A.; Vicente G. Tetrahedron: Asymmetry, 1997, 8, 18, 3153-3159.
11.Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am. Chem. Soc. 2005, 127, 11, 3774-3789.
12.Iqbal, J.; Srivastava, R. R.; J. Org. Chem. 1992, 57, 7, 2001-2007.