簡易檢索 / 詳目顯示

研究生: 李偉立
Lee, Weli
論文名稱: 蛇紋岩的純化與其合成堇青石陶瓷體之研究
Study on the synthesis of Cordierite ceramic by purified Serpentinite powders
指導教授: 申永輝
D.Shen
溫紹炳
Wen, Shaw-Bing
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 96
中文關鍵詞: 純化堇青石蛇紋岩合成固態反應
外文關鍵詞: purification, Cordierite, Serpentinite, solid reaction, synthesis
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      
    台灣東部之蛇綠岩系 (Ophiolite),原屬於海洋地殼之基性和超基性火成岩,經變質和風化作用 … 等形成之岩石系。本研究之重點在開發該岩石系之蛇紋岩,成為高科技用途材料之新礦源。基於上述之考量,利用其提選之精礦粉,與高嶺石作適當比例之混合,來試驗燒製成為 MgO – Al2O3 – SiO2 三成分系統之工業陶瓷,即菫青石 (Cordierite)。

    菫青石是含有鎂鋁之矽酸鹽礦物,其分子式是 Mg2Al4Si5O18‧n H2O,高溫相稱為六方菫青石,其分子式中沒有 H2O,具有高熔點、高強度、低介電常數、低熱膨脹係數、高電阻係數、高熱傳導率、高機械強度與極佳的抗熱震…等優異的特性,故其用途非常廣泛,除了傳統用途如汽車用燃氣輪機的熱交換器,排氣淨化用觸媒載體…等,亦極適合作為積體電路基板材料 (Integrated Circuit Substrates),其性質較傳統氧化鋁優良。

      菫青石的計量組成為 2 MgO.2 Al2O3.5 SiO2。本研究以高嶺石補足氧化鋁,與提純之蛇紋岩以適當比例進行固態反應,合成菫青石粉末,並製備其燒結體。探討:(1) 蛇紋岩與磁鐵礦之分選條件對氧化鐵之去除率與蛇紋岩之回收率的影響;(2) 提純後之蛇紋岩的化學組成;(3) 煅燒條件對菫青石粉末與其燒結體之影響;(4) 燒結助劑對燒結體結晶相及對其熱電性質的影響。

    根據實驗結果發現:(1) 經由顎式碎礦機與加水球磨的操作程序後,蛇紋岩原礦的粒徑可大幅縮減至 10 um 以下;(2) 以 3.8 N HCl 對粒徑縮減後的蛇紋岩做酸浸漬可有效地降低 Fe 含量至 0.32 wt %,而蛇紋岩的回收率是 84.06 wt %; (3) 將提純的蛇紋岩與高嶺土來合成的粉末以1100 ℃ 持溫 4 小時煆燒,可獲得 μ – Cordierite 的結晶相,其顆粒粒徑約為 48.24 nm;(4) 比較低溫與高溫煆燒所製備之燒結體,發現前者較緻密,且其緻密化發生的溫度比高溫者低約200 ℃,顯示低溫煆燒對後續的燒結行為有較佳的結果;(5) 以氧化鉍 (Bi2O3) 作為燒結助劑,可有效降低 α – Cordierite 結晶相析出的溫度,並降低燒結緻密化溫度。以 1220 ℃ 持溫 6 小時燒結,燒結體之氧化鉍添加量為12 wt % 可得相對密度達 92 % 之 α – Cordierite。

    Summary

    This study is focus on developing Serpentinite as a new source for making high – tech material. For this reason, the mixture of refined Serpentinite and kaolinite with suitable ratio was sintered to be a ternary compound of MgO – Al2O3 – SiO2, that is, Cordierite.

    Cordierite, due to low thermal expansion coefficient, high resistivity, high conductivity and good mechanical strength, is mainly used in the fabrication of industrial heat exchangers for turbines used in automobiles, and catalyst of self - cleaning ovens. Besides, Cordierite is expected to have great potential as substrate materials in the application of integrated circuit board replacing alumina, which has a relatively low dielectric constant (~ 5) at the high frequency region.

    Stoichiometric composition of Cordierite is 2 MgO.2 Al2O3.5 SiO2. This study is to investigate precursor of Cordierite powders synthesized by refined Serpentine and kaolinite with suitable ratio via solid reaction. By the way, kaolinite is substitute for alumina. It is studied on (1) separation conditions of Serpentinite and magnetite influence on the elimination of ferric oxide and the recycling of Serpentinite; (2) compositions of refined Serpentinite; (3) effects of sintering conditions on particles size and sintered matrix; and (4) effects of sintering aid on crystalline phase and relative thermionics’ properties of Cordierite.

    It is found that (1) particles size of Serpentinite can be decreased below 10 um through a jaw crusher and a ball mill duplex conditions; (2) Fe contents of Serpentine with smaller particles size can be reduced to be 3.2 wt% after soaking it into 3.8 N HCl solution; (3) μ- Cordierite crystalline phase with particle size 48.24 um synthesized by purified Serpentine and Kaolinite is obtained after calcining at temperature 1100 oC; (4) lower temperature calcining contributes to follow-up sintering behavior according to the level of densitification calcining at higher and lower temperature; and (5) growth temperature of α- Cordierite crystalline phase and densitification temperature can be reduced by Bi2O3 addition. In a word, relative density of α - Cordierite can be reached to be 92 % with 12 wt % Bi2O3 addition after sintering at temperature 1220 oC for 6 hrs.

    目錄 摘要 III Abstract IV 誌謝 VI 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 4 第二章 理論背景與前人研究 7 2.1 原料之基本性質 7 2.2 MgO – Al2O3 – SiO2 系瓷體之構造與特性 8 2.3 電子產品之基板材料所需之性質 16 2.4 燒結理論與燒結助劑的選擇 20 2.4.1 燒結反應之驅動力 20 2.4.2 燒結過程之相變化 21 2.5 前人研究 26 2.5.1 菫青石粉末之合成的前人研究 26 2.5.2 燒結的前人研究 27 第三章 實驗方法與步驟 30 3.1 原料概述 30 3.2 實驗步驟 31 3.2.1 蛇紋岩之研磨與提選 32 3.2.2 堇青石粉末的合成與其燒結體之製備 33 3.3 性質分析 36 3.3.1 成分量的分析 36 3.3.2 熱重熱差分析 37 3.3.3 X光繞射之分析 37 3.3.4 掃描式電子顯微鏡觀察 37 3.3.5 粉末比表面積之量測 38 3.3.6 粉末密度之量測 39 3.3.7 燒結體視密度與孔隙率之量測 40 3.3.8 熱膨脹係數之量測 41 3.3.9 介電常數之量測 41 3.3.10 熱傳導值量測 42 3.3.11 硬度測試 43 3.3.12 磁性測定 44 第四章 結果與討論 45 4.1 蛇紋岩的純化 45 4.1.1 粒徑的縮減 45 4.1.1.1 顎式碎礦機 45 4.1.1.2 濕式球磨 45 4.1.2 除鐵 48 4.1.2.1 物理磁選法 48 4.1.2.2 化學酸浸漬 50 4.1.2.3 回收率的分析 52 4.1.3 原料分析 53 4.1.3.1 成分分析 53 4.1.3.2 晶相分析 55 4.1.3.3 熱性質分析 56 4.1.3.4 顯微觀察 58 4.2 堇青石的合成與燒結 60 4.2.1 堇青石粉末之合成 60 4.2.1.1 前導物粉末之熱性質分析 60 4.2.1.2 煅燒粉末之比表面積 62 4.2.1.3 煅燒粉末之顯微觀察 63 4.2.2 燒結體的製備 67 4.2.2.1 低溫與高溫煆燒粉末之燒結效能 67 4.2.2.2 成型壓力對相對密度之影響 69 4.2.2.3 燒結助劑對結晶相之影響 71 4.2.2.4 燒結助劑對相對密度的影響 77 4.2.2.5 燒結助劑對顯微結構之影響 80 4.2.2.6 燒結助劑對介電性質之影響 81 4.2.2.7 燒結助劑對熱膨脹係數的影響 83 4.2.2.8 菫青石燒結體與其起始原料蛇紋岩之機械性質 85 第五章 結論 87 參考文獻 90 自述 96

    參考文獻

    1. 台灣地區蛇紋石之利用需求與流向調查,台灣礦業,第 45 卷,第三期,民國 82 年 9 月。
    2. 趙宏欽、楊明恭,蛇紋石使用於煉鐵作業之研究,礦冶,民國 71 年 9 月。
    3. 謝煜弘,電子材料,新文京開發出版有限公司。 (2003)
    4. 陳其瑞、曾保忠,花蓮縣萬榮地區蛇紋岩調查研究報告,台灣省礦務局,台北市。 (1984)
    5. C. Y Lan and J. G Liou, Occurrence Petrology and tectonics of Serpentinites and associated rodingites in the central range, Taiwan, Memoir of the geological society of China, no. 4, pp. 343 – 389. (1981)
    6. L. P Tan and H. Y Chuay, Serpentinite of the Fengtien – Wanyung area, Hualien, Taiwan, Acta Geologica Taiwan, No. 20, pp. 52 – 68. (1979)
    7. 林錦郎,蛇紋石材機械化開採之研究 – 以玉里地區為個案,資源工程所碩士論文,國立成功大學。 (1998)
    8. J. D Dana, Manual of mineralogy, John Wiley & Sons, N. Y. (1993)
    9. 藍晶瑩,東台灣之蛇紋岩系簡介,礦業技術, pp. 211 – 215. (1977)
    10. 蔡印來、張瑞麟及廖學誠, ”台灣蛇紋銀岩資源開發現況及未來潛力市場之探討,” 中國曠冶工程學會八十七年年會論文集, B – 11 – 1 ~ 7 頁,台南,民國 87 年 11 月。
    11. 魏稽生及譚立平,台灣非金屬經濟礦物 (台灣經濟礦物第二卷) ,經濟部地質調查所編印,民國 88 年 12 月。
    12. 溫紹炳、雷大同及黃紀嚴,台灣片狀矽酸鹽礦物之利用開發,經濟部礦業司,民國 89 年 12 月。
    13. 蔡敏行, ”二十一世紀資源再生之展望” ,礦冶,第 35 卷第 4 期, pp. 31 – 38, 民國 80 年 12 月。
    14. 李瑞欽,蛇紋岩之微結構與粉碎粒度分布特性之研究,資源工程所碩士論文,國立成功大學。 (1998)
    15. 克思忠,台灣地區蛇紋石結晶構造與礦物化學之研究,地質研究所碩士論文,國立台灣大學。 (1988)
    16. 江文鋒,台灣關山區蛇紋岩試製為 MgO – Al2O3 – SiO2 系陶瓷之性質與其應用之研究,資源工程所碩士論文,國立成功大學。 (1982)
    17. O Muller and R Roy, The major ternary structural families, Springer, New York. (1974)
    18. W. D Kingery, H. K Bowen, D. R Uhlmann, Introduction to ceramics, John Wiley and Sons, New York. (1976)
    19. 吳朗,電子陶瓷 - 介電,全欣科技圖書。 (1994)
    20. H Spoel, Journal of metals, vol. 42, No. 4, pp. 38 – 41. (1990)
    21. Reser, M. K, “Phase Diagrams of Ceramics,” Journal of the American Ceramic Society, Fig. 712. (1964)
    22. 李育成, “菫青石玻璃陶瓷基板之性質研究,” 礦冶及材料科學
    研究所碩士論文,國立成功大學。 (1987)
    23. U Enz, in “Magnetism and magnetic materials: Historical Developments,” vol. 3, edited by E. P Wonlfarth, p. 285 and p. 48. (1982)
    24. C. G Bergeron, S. H Risbud, Introduction to phase equilibria in ceramics, The Am. Ceram. Soc. Inc., Columbus, Ohio. (1984)
    25. 鄭武輝等譯, “工業陶瓷,” 徐氏基金會出版社。 (1985)
    26. Glendenning, M. D and W. E Lee, “Micro - structural Development on Crystallizing Hot - pressed Pellets of Cordierite Melt - derived Glass Containing B2O3 and P2O5, ” Journal of the American Ceramic Society, 79 [3], pp. 705 ~ 713. (1996)
    27. Andrew Putnis, Introduction to Mineral Sciences, Cambridge University Press. (1992)
    28. O Muller and R Roy, The Major Ternary Structural Families, Springer - Verlag, Berlin. (1974)
    29. Miyashiro, A, “Cordierite - Indialite Relations,” American Journal Science, 255, pp. 43 ~ 62. (1957)
    30. Kingery Bowen Uhlmann edited ,陳皇鈞 譯, “陶瓷材料概論” 。 (1988)
    31. L. L Hencb, J. K West, “PRINCIPLES of ELECTRONIC CERAMICS,” JOHN WILEY & SONS (SEA) PTELTD. (1990)
    32. 鄭淼晶,以溶膠凝膠法製備菫青石粉末及其燒結體之性質研究,資源工程研究所,國立成功大學。 (2004)
    33. Evans, D. L et al., “Thermal Expansions and Chemical Modifications of Cordierite,” Journal of the American Ceramic Society, vol. 63, no. 11 ~ 12, pp. 629 ~ 634. (1980)
    34. Buchanan, R. C, Ceramic Materials for Electronics: Processing, Properties and Applications, Marcel Dekker, Inc. (1986)
    35. Spurr, R. A and Mysers, H, “Quantitative Analysis of Anatase - Rutile Mixtures with an X - Ray Diffractometer,” Analysis Chemistry, 29, pp. 760 - 762. (1957).
    36. Suzuki, H, H Saito and T Hayashi, “Thermal and Electric Properties of Alkoxy - Derived Cordierite Ceramic,” Journal of the European Ceramic Society, vol. 9, pp. 365 - 371. (1992)
    37. Saha, B. P, R Johnson and I Ganesh, “Thermal Anisotropy in Sintered Cordierite Monoliths,” Materials Chemistry and Physics, 67, pp. 140 – 145. (2001)
    38. Juan C Nino, Hyuk J Youn, Michael T Lanagan and Clive A Randall, “Bi2O3 solubility of Bi - based pyrochlores and related phase”, J. Mater. Res., vol. 17, No. 5, pp. 1178 – 1182. (2002)
    39. Johnson, R, I Ganesh, B. P Saha, G. V Narasimha Rao, Y. R Mahajan, “Solid State Reactions of Cordierite Precursor Oxides and Effect of CaO doping on the Thermal Expansion Behavior of Cordierite Honeycomb Structures,” Journal of the Materials Science, vol. 38, pp. 2953 – 2961. (2003)
    40. Camerucci, M. A, G Urretavizcaya, M. S Castro, A. L Cavalieri, “Electrical Properties and Thermal Expansion of Cordierite and Cordierite - Mullite Materials,” Journal of the European Ceramic Society, 21, pp. 2917 – 2923. (2001)
    41. H. S Kanost, “Cordierite Electrical Insulators,” Interceram, NR. 1, P. 61. (1979)
    42. 潘德華、鄭武輝、李信義,合成菫青石之研製,工程,p. 21 – 32。 (1973)

    下載圖示 校內:2009-08-27公開
    校外:2009-08-27公開
    QR CODE