簡易檢索 / 詳目顯示

研究生: 潘丙閎
Pan, Bing-Hong
論文名稱: 建造低能量可攜式小型永磁環形加速器
Building a Low Energy Portable Mini Magnet Cyclotron
指導教授: 楊毅
Yang, Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 80
中文關鍵詞: 環形加速器永久磁鐵離子源真空系統
外文關鍵詞: cyclotron, permanent magnet, ion source, vacuum system
相關次數: 點閱:83下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 至今環形加速器已在許多基礎科學實驗中被使用,產生極高能粒子以協助科學
    家探究宇宙如何形成,然而它們是否也能在更貼近我們日常生活的領域中派上用場?
    若能建造產生較低能量且尺寸也較小的加速器,也會很有幫助。這便是「小型加速
    器」的概念。
    如同其它較大者一般,這樣的加速器也以勞倫茲磁力為運作原理,並且同樣需
    要幾個條件的滿足,包含一個離子源、一均勻磁場、真空環境以及高頻率交變電源。
    在這篇論文中,將提到建造小型加速器的動機及其潛在應用,它和其中的關鍵部件
    ── 離子源之設計皆有詳細介紹,並展示永久磁鐵磁場之量測及小型加速器中的電磁
    場之模擬。
    關鍵字:環形加速器、永久磁鐵、離子源、真空系統。

    Cyclotrons have been used in many experiments for basic science, generating particles with extremely high energy to help scientists know more about how the Universe formed. However, can they also serve in fields closer to our daily life? It would also be very useful if they can be made with lower energies and smaller sizes. This is the concept about "Mini-cyclotron".
    Like any other larger one, such a cyclotron takes a Lorentz force as its working principle and requires several conditions satisfied including an ion source, a uniform magnetic field, a vacuum environment, and a high-frequencied AC source. In this thesis, motivation of creating Mini-cyclotron and its potential application will be mentioned. Designs and its critical part, Ion source, are described in detail. Measurements of magnetic fluxes between permanent magnets as well as simulations of magnetic and electric fields inside Mini-cyclotron are
    also shown.
    Keywords: cyclotron, permanent magnet, ion source, vacuum system

    Abstract in Chinese i Abstract in English ii Acknowledgements iii Contents iv List of Tables vi List of Figures vii 1 Introduction 1 2 Overview about Particle Accelerators 2 2.1 Before Cyclotron 2 2.2 Cyclotron 4 2.3 Post-cyclotron 11 3 Experimental Apparatus 14 3.1 Motivation of Building Mini-cyclotron 14 3.2 Mini-cyclotron 15 3.2.1 Ion Source Chamber 16 3.2.2 Main Chamber 30 3.2.3 Vacuum System 44 3.3 The Whole Set 50 4 Measurements, Simulations and Main Experiments 55 4.1 Magnets' Flux Densities 55 4.1.1 Measurement 55 4.1.2 Simulation 61 4.2 Simulation of E Field inside Ion Source Chamber 70 4.3 Simulation of E Field inside Main Chamber 71 4.4 Main Experiment 73 5 Conclusions and Future Works 77 References 78

    [1] E. O. Lawrence and M. S. Livingston, “The Production of High Speed Light Ions Without the Use of High Voltages,” Physical Review, vol. 40, pp. 19–35, 1932.
    [2] A. L. Yergey and A. K. Yergey, “Preparative Scale Mass Spectrometry: A Brief History of the Calutron,” American Society for Mass Spectrometry, vol. 8, pp. 943–953, 1997.
    [3] T. A. Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Physics Letters B, vol. 716, pp. 1–29, 2012.
    [4] B. T. King, “A Preliminary Design for a Small Permanent Magnet Cyclotron,” Bachelor’s Thesis, Houghton College, 2002.
    [5] J. D. Cockcroft and E. T. S. W. et al., “Experiments with High Velocity Positive Ions.—(I) Further Developments in the method of obtaining High Velocity Positive Ions,” Proceedings of the Royal Society of London, vol. 136, pp. 619–630, 1932.
    [6] R. J. V. de Graaf, K. T. Compton, and L. C. V. Atta, “The Electrostatic Production of High Voltage for Nuclear Investigations,” Physical Review, vol. 43, pp. 149–157, 1933.
    [7] Geni, “A Cockcroft-Walton generator in the National Science Museum in London, England,” 2012. [Online]. Available: https://commons.wikimedia.org/w/index.php?curid=19862848
    [8] L. Paxton, “Picture of the Westinghouse Atom Smasher on the grounds of the old Westinghouse Research Laboratories at Avenue A, Service Road No. 1, and West Street in Forest Hills, Pennsylvania, on May 9, 2010.” 2010. [Online]. Available: https://en.wikipedia.org/wiki/File:WestinghouseAtomSmasher.jpg
    [9] R. R. Wilson and L. Raphael, Accelerators: Machines of Nuclear Physics, 1960.
    [10] R. Wideröe, “Über Ein Neues Prinzip Zur Herstellung Hoher Spannungen,” Archiv für Elektrotechnik, vol. 21, pp. 387–406, 1928.
    [11] Chetvorno, “Animation illustrating how a linear particle accelerator works.” 2018. [Online]. Available:
    https://commons.wikimedia.org/wiki/File:Linear_accelerator_animation_16frames_1.6sec.gif
    [12] A. Degiovanni, P. Stabile, and D. Ungaro, “LIGHT: A LINEAR ACCELERATOR FOR PROTON THERAPY,” 2016.
    [13] “American Physical Society names ORNL’s Holifield Facility historic
    physics site,” 2016. [Online]. Available: https://www.ornl.gov/news/
    american-physical-society-names-ornls-holifield-facility-historic-physics-site
    [14] H. A. Lorentz, La théorie électromagnétique de Maxwell et son application aux corps mouvants. E. J. Brill, 1892.
    [15] M. S. Khan, N. Kanwal, and H. Rozeen, “A Systematic Review of Medical Cyclotron, Producing F-18 & FDG Radio Isotopes for PET Scan Imaging,” International Journal of Engineering Development and Research, vol. 5, pp. 620–623, 2017.
    [16] K. Adekola, S. T. Rosen, and M. Shanmugam, “Glucose transporters in cancer metabolism,” Current Opinion in Oncology, 2012.
    [17] [Online]. Available: https://www1.cgmh.org.tw/intr/intr2/c33e0/english/proton-center/equipment.html#.YkLOB-dBw2w
    [18] W.-M. Chia, C.-S. Chen, and T.-R. Yeh, “Conceptual design of the INER cyclotron based neutron radiograph facility,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 377, pp. 27–31, 1996.
    [19] H. Okuno, T. Dantsuka, and K. Y. et al., “SUPERCONDUCTING RING CYCLOTRON FOR RIKEN RI BEAM FACTORY IN JAPAN,” 2010.
    [20] [Online]. Available: https://www.nishina.riken.jp/facility/RIBFabout_e.html
    [21] [Online]. Available: https://www.nishina.riken.jp/facility/SRC_e.html
    [22] [Online]. Available: https://www.guinnessworldrecords.com/world-records/largest-cyclotron/
    [23] “Cyclotron Vacuum Tank (labeled),” 1991. [Online]. Available: https://www.triumf.ca/galleries/image/3141-cyclotron-vacuum-tank-labeled
    [24] V. I. Veksler, “A new method of accelerating relativistic particles,” J. Phys., vol. 9, pp. 153–158, 1945.
    [25] A. Rao, “LS2 Report: CERN’s newest accelerator awakens.” [Online]. Available: https://home.cern/news/news/accelerators/ls2-report-cerns-newest-accelerator-awakens
    [26] C. O’Luanaigh, “First successful beam at record energy of 6.5 TeV.” [Online]. Available:
    https://home.web.cern.ch/news/news/accelerators/first-successful-beam-record-energy-65-tev
    [27] A. Horvath, “The LHC experiments and the preaccelerators.” 2006. [Online]. Available: https://commons.wikimedia.org/wiki/File:LHC.svg
    [28] [Online]. Available: https://www.ptcog.ch/index.php/facilities-in-operation-restricted
    [29] [Online]. Available: https://www.ptcog.ch/index.php/patient-statistics-2
    [30] D. A. A. Miller, “The dose produced by a native and by a modified proton beam in passing through tissue, compared to the absorption of a photon or x-ray beam.” 2005. [Online]. Available: https://commons.wikimedia.org/wiki/File:BraggPeak.png
    [31] Proton and L. C. G. M. H. Radiation Therapy Center, “Introduction of proton beam radiation therapy,” 2014. [Online]. Available: https://www1.cgmh.org.tw/intr/intr2/c33e0/pdf/Understanding%20of%20proton%20radiation%20therapy%20English.pdf
    [32] D. C. Faircloth, “Ion sources for high-power hadron accelerators,” 2013, pp. 369–407.
    [33] [Online]. Available: https://omnexus.specialchem.com/polymer-properties/properties/dielectric-strength
    [34] J. Adam, T. Boutboul, G. Cavallari, and Z. C. et al., “Status of the LHC Superconducting Cable Mass Production,” IEEE Transactions on Applied Superconductivity, vol. 12, pp. 1056–1062, 2002.
    [35] [Online]. Available: https://www.advancedmagnets.com/
    how-to-understand-the-rare-earth-permanent-magnets-grades-part-1-sintered-neodymium-iron-boron-magnets/
    [36] [Online]. Available: https://www.advancedmagnets.com/sintered-ndfeb-magnets/
    [37] [Online]. Available: https://www.kjmagnetics.com/blog.asp?p=surface-fields-101
    [38] [Online]. Available: https://www.kjmagnetics.com/calculator.asp
    [39] [Online]. Available: https://www.kjmagnetics.com/calculator.asp?calcType=block
    [40] “Scroll Pump Animation.” [Online]. Available: https://www.youtube.com/watch?v=s3xulCRrjos&ab_channel=PPlusVac
    [41] M. Fukuta, D. Ogi, M. Motozawa, T. Yanagisawa, and S. Iwanami, “Seal Mechanism of Tip Seal in Scroll Compressor, ” 2014.
    [42] “Scroll compressor / spiral compressor / scroll pump - How it works! (Animation).” [Online]. Available:
    https://www.youtube.com/watch?v=yNgqI4XPUZc&ab_channel=ThomasSchwenke
    [43] 楊錦章, “渦輪式分子真空幫浦, Turbo Molecular Pumps,” 真空科技, vol. 3, pp. 56–68, 1990.
    [44] User: Liquidat, “A cut-through turbomolecular pump model. The different rotor sizes and grain sizes can clearly be seen.” 2005. [Online]. Available: https://commons.wikimedia.org/wiki/File:Cut_through_turbomolecular_pump.jpg
    [45] [Online]. Available: https://www.emworks.com/
    [46] [Online]. Available: https://www.solidworks.com/

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE