| 研究生: |
劉勇材 Liou, Yung-Tsai |
|---|---|
| 論文名稱: |
利用小鼠模式研究含雙色胺酸功能區氧化還原酶在發炎反應中的角色 Study of WW domain-containing oxidoreductase using inflammatory animal models |
| 指導教授: |
徐麗君
Hsu, Li-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 含雙色胺酸功能區氧化還原酶 、發炎反應 |
| 外文關鍵詞: | WW domain-containing oxidoreductase, inflammatory responses |
| 相關次數: | 點閱:152 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類WWOX基因可轉譯出具有抑制腫瘤生成作用的含雙色胺酸功能區氧化還原酶 (WW domain-containing oxidoreductase, WWOX),在小鼠又稱為 WOX1 蛋白質。為了研究 WWOX/WOX1 蛋白質在體內的功能,我們實驗室成功地生產出 Wwox-/- 小鼠,而且發現 Wwox-/- 小鼠在出生後一個月內會死亡,顯示 WWOX/WOX1 蛋白質除了具有腫瘤抑制功能外,尚有其他的生理功能。為了研究 WWOX/WOX1 蛋白質在體內的功能,我們利用 Wwox+/+ 與 Wwox+/- 小鼠,建立發炎的實驗動物模式進行研究。我們發現在實驗動物模式中,Wwox+/- 小鼠出現體重急遽下降與死亡的現象。與 Wwox+/+ 小鼠相比之下,Wwox+/- 小鼠脾臟有腫大的情形。此外,在給予處理後的小鼠血清中,也偵測到大量的介白素-6分泌。在實驗動物模式中,小鼠的調控型 T 細胞數量並沒有任何變化,顯示 WWOX/WOX1 蛋白質表現多寡並不影響調控型 T 細胞分化的數量。總結目前的結果,我們推測在小鼠的發炎反應中, WWOX/WOX1 蛋白質扮演重要的調控性角色。
Human WWOX gene encodes a candidate tumor suppressor WW domain-containing oxidoreductase (designed WWOX or murine WOX1). For analyzing the functional roles of WWOX/WOX1 in vivo, we have successfully generated Wwox gene knockout mice in our laboratory. All the whole-body Wwox-/- mice died within a month after birth, suggesting that WWOX/WOX1 functions beyond a tumor suppressor. To investigate the in vivo function of WWOX/WOX1, we tested inflammatory mouse model using Wwox+/+ and Wwox+/- mice. We found that Wwox+/- mice exhibited more severe disease symptoms and higher mortality rate than the wild-type control mice. Compared with Wwox+/+ mice, increased spleen weights were observed in Wwox+/- mice after treatment. High serum levels of interleukin (IL)-6 were detected in treated mice, suggesting that these mice developed more severe inflammatory responses. Comparable numbers of regulatory T cells (Treg) were determined in mice, indicating that WWOX/WOX1 may not affect Treg cell differentiation. Together, our results suggest that WWOX/WOX1 plays important roles in regulating inflammatory responses in mice.
1. Bednarek, A.K. et al. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3–24.1, a region frequently affected in breast cancer. Cancer Res. 60, 2140-2145 (2000).
2. Ried, K. et al. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum. Mol. Genet. 9, 1651-1663 (2000).
3. Chang, N.S. et al. Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J. Biol. Chem. 276, 3361-3370 (2001).
4. Chang, N.S. et al. Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem. Pharmacol. 66, 1347-1354 (2003).
5. Chang, N.S. et al. WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol. Med. 13, 12-22 (2007).
6. Chang, J.Y. et al. Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase. Exp. Biol. Med. 235, 796-804 (2010).
7. Aqeilan, R.I. et al. Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc. Natl. Acad. Sci. U.S.A. 101, 4401–4406 (2004).
8. Mahajan, N.P. et al. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 65, 10514–10523 (2005)
9. Carter, B.S. et al. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 87, 8751-8755 (1990).
10. Konishi, N. et al. Genetic mapping of allelic loss on chromosome 6q within heterogeneous prostate carcinoma. Cancer Sci. 94,764-768 (2003).
11. Ishii, H. & Furukawa, Y. Alterations of common chromosome fragile sites in hematopoietic malignancies. Int. J. Hematol. 79, 238-242 (2004)
12. Kuroki, T. et al. The tumor suppressor gene WWOX at FRA16D is involved in pancreatic carcinogenesis. Clin. Cancer Res. 10, 2459-2465 (2004).
13. Donati, V. et al. WWOX expression in different histologic types and subtypes of non-small cell lung cancer. Clin. Cancer Res. 13, 884-891 (2007)
14. Ramos, D. et al. Low levels of WWOX protein immunoexpression correlate with tumour grade and a less favourable outcome in patients with urinary bladder tumours. Histopathology 52:831-839 (2008).
15. Qin, H.R. et al. A role for the WWOX gene in prostate cancer. Cancer Res. 66, 6477-6481 (2006).
16. Aqeilan, R.I. et al. Targeted deletion of Wwox reveals a tumor suppressor function. Proc. Natl. Acad. Sci. U.S.A. 104, 3949-3954 (2007).
17. Kyle J. Crohn's disease in the northeastern and northern Isles of Scotland: an epidemiological review. Gastroenterology 103,392-399 (1992).
18. Loftus, E.V. et al. Crohn's disease in Olmsted County, Minnesota, 1940-1993: incidence, prevalence, and survival. Gastroenterology 114:1161-1168 (1998).
19. Xavier, R.J. and Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427-434, (2007).
20. Freeman, H.J. Granuloma-positive Crohn's disease. Can. J. Gastroenterol. 21,583-587 (2007).
21. Orholm, M. et al. Familial occurrence of inflammatory bowel disease. N. Engl. J. Med. 324, 84-88 (1991).
22. Tysk, C., Lindberg, E., Jarnerot, G., & Floderus-Myrhed, B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 29, 990–996 (1988).
23. Hammer, G.E. et al. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat. Immunol. 12:1184-1193 (2011).
24. Ruiz, P.A. et al. IL-10 gene-deficient mice lack TGF-beta/Smad signaling and fail to inhibit proinflammatory gene expression in intestinal epithelial cells after the colonization with colitogenic Enterococcus faecalis. J. Immunol. 174, 2990-2999 (2005).
25. Scheinin, T. et al. Validation of the interleukin-10 knockout mouse model of colitis: antitumournecrosis factor-antibodies suppress the progression of colitis. Clin. Exp. Immunol. 133, 38–43 (2003).
26. Gassler, N. et al. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am. J. Physiol. Gastrointest. Liver. Physiol. 281, G216-G228, (2001).
27. Boismenu R. & Chen Y. Insights from mouse models of colitis. J. Leukoc. Biol.67, 267-278, (2000).
28. Hoffmann, J.C. et al. M. Animal models of inflammatory bowel disease: an overview. Pathobiology 70,121-130, (2002).
29. Perše, M. & Cerar, A. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012, 718617 (2012).
30. Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694-702 (1990).
31. Ni, J, Chen, S.F., & Hollander, D. Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut 39, 234–241 (1996).
32. Kitajima, S., Takuma, S., & Morimoto, M. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp. Anim. 49, 9-15 (2000).
33. Hirono, I. et al. Carcinogenicity of dextran sulfate sodium in relation to its molecular weight. Cancer Lett. 18, 29-34 (1983).
34. Bamba, S. et al. The severity of dextran sodium sulfate-induced colitis can differ between dextran sodium sulfate preparations of the same molecular weight range. Dig. Dis. Sci.57, 327-334 (2012).
35. Clapper, M.L., Cooper, H.S., & Chang, W.C. Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions. Acta. Pharmacol. Sin. 28, 1450-1459 (2007).
36. Rosenberg, D.W, Giardina, C., & Tanaka, T. Mouse models for the study of colon carcinogenesis. Carcinogenesis 30, 183–196 (2009).
37. Lucchinetti, C.F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365,2188-2197 (2011).
38. Tsai, C.P. et al. Multiple sclerosis in Taiwan. J. Chin. Med. Assoc. 67, 500-505 (2004).
39. Rivers, T.M., Sprunt, D.H., & Berry, G.P. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J. Exp. Med. 58, 39–53 (1933).
40. Olitsky, P.K. & Tal, C. Acute disseminated encephalomyelitis produced in mice by brain proteolipid (Folch–Lees). Proc. Soc. Exp. Biol. Med. 79, 50–53 (1952).
41. Lebar, R. & Vincent, C., Tentative identification of a second central nervous system myelin membrane autoantigen (M2) by a biochemical comparison with the basic protein (BP). J. Neuroimmunol. 1, 367–389 (1981).
42. Linnington, C., Webb, M., and Woodhams, P.L. A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody. J. Neuroimmunol. 6, 387–396 (1984).
43. Stromnes, I.M. & Goverman, J.M. Active induction of experimental allergic encephalomyelitis. Nat. Protoc. 1, 1810-1819 (2006).
44. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744-748 (2003).
45. Tzartos, J.S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172,146-155 (2008).
46. Rouvier, E. et al. CTLA‑8, cloned from an activated T cell, bearing AU‑rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150, 5445–5456 (1993).
47. Murphy, C.A. et al. Divergent pro‑ and antiinflammatory roles for IL‑23 and IL‑12 in joint autoimmune inflammation. J. Exp. Med. 198,1951-1957 (2003)
48. Gaffen, S.L. Structure and signalling in the IL‑17 receptor family. Nat. Rev. Immunol. 9, 556-567 (2009).
49. Song, X. et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat. Immunol. 12, 1151-1158 (2011).
50. Ramirez-Carrozzi, V. et al. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat Immunol. 12, 1159-1166 (2011).
51. Chang, S.H., et al. Interleukin-17C promotes TH17 cell responses and autoimmune disease via Interleukin-17 receptor E. Immunity 35, 611-621 (2011)
52. Volpe, E. et al. A critical function for transforming growth factor-, interleukin 23 and proinflammatory cytokines in driving and modulating human TH17 responses. Nat. Immunol. 9, 650-657 (2008).
53. Chung, Y. et al. Critical regulation of early TH17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).
54. Tesmer, L.A. et al. TH17 cells in human disease. Immunol. Rev. 223, 87-113 (2008).
55. Wirtz, S. et al. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541-546 (2007).
56. Takedatsu, H. et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T helper (TH) 1 and TH17 activation. Gastroenterology 135, 552-567, (2008).
57. Zhang, R. et al. Dextran sulphate sodium increases splenic Gr1(+)CD11b(+) cells which accelerate recovery from colitis following intravenous transplantation. Clin. Exp. Immunol. 164, 417-427 (2011).
58. Huber, S. et al. Cutting edge: TGF- signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J. Immunol. 173, 6526-6531 (2004).
59. Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65-70 (2003).
60. Alex, P. et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm. Bowel Dis. 15, 341-352 (2009).
61. Mähler, M. et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am. J. Physiol. 274, G544-G551 (1998).
62. Sanchez-Munoz, F., Dominguez-Lopez, A., & Yamamoto-Furusho, J.K. Role of cytokines in inflammatory bowel disease. World J. Gastroenterol. 14, 4280-4288 (2008).
63. Melgar, S., Karlsson, A., & Michae¨lsson, E. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1328–G1338 (2005).
64. Gäbele, E. et al. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J. Hepatol. 55, 1391-1399 (2011).
65. Araki, Y. et al. Increased apoptosis and decreased proliferation of colonic epithelium in dextran sulfate sodium-induced colitis in mice. Oncol. Rep. 24, 869-874 (2010).
66. Laskin D.L. et al. Macrophages and tissue injury: agents of defense or destruction? Annu. Rev. Pharmacol. Toxicol. 51,267–288 (2011).
67. Mosser, D.M. & Edwards, J.P. et al. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958-969 (2008).
68. Ruffell, D. et al. A CREB-C/EBP cascade induces M2 macrophage specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. U.S.A. 106, 17475–17480 (2009).
69. Sindrilaru, A. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121, 985–997 (2011).
70. Badylak, S.F. et al. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A. 14, 1835-1842 (2008).
71. White, S.R. et al. Insulin receptor substrate-1/2 mediates IL-4-induced migration of human airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L164–L173 (2009).
72. Crosby, L.M. & Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Lung Cell Mol. Physiol. 298, L715–L731 (2010).
73. Bondow, B.J. et al. E-cadherin is required for intestinal morphogenesis in the mouse. Dev Biol. [Epub ahead of print] (2012).
74. Kim, Y.S. et al. TH17 responses are not induced in dextran sodium sulfate model of acute colitis. Immune. Netw.11, 416–419 (2011).
75. Muranski, P. et al. TH17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35, 972–985 (2011).
76. Kryczek, I. et al. Human TH17 cells are long-lived effector memory cells. Sci. Transl. Med. 3, 104ra100 (2011).
77. Cua, D.J. & Tato, C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479-489 (2010).
78. Park, S.G. et al. T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells. Immunity 33, 791-803 (2010).
79. Tsuchiya, T. et al. Role of T Cells in the inflammatory response of experimental colitis mice. J. Immunol. 171, 5507-5513 (2003).
80. Rubtsov, Y.P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546-558 (2008).
81. Wan, Y.Y. & Flavell, R.A. TGF-β and regulatory T cell in immunity and autoimmunity. J. Clin. Immunol. 28, 647-659 (2008).
82. Canaday, D.H. et al. Class II MHC antigen presentation defect in neonatal monocytes is not correlated with decreased MHC-II expression. Cell Immunol. 243, 96-106 (2006).
83. Hofmann, J. et al. NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses. J. Exp. Med. 208, 1917-1929 (2011).
84. Zou, W.P. & Restifo, N.P. TH17 cells in tumour immunity and immunotherapy. Nat. Rev. Immunol. 10, 248-256 (2010).
85. O'Shea, J.J. & Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T Cells. Science 327, 1098-1102 (2010).
86. Solomon, T. et al. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet. Infect. Dis. 10, 778–790 (2010).
87. Jin, W. et al. Regulation of TH17 cell differentiation and EAE induction by MAP3K NIK. Blood 113, 6603-6610 (2009).
88. Lazarevic, V. et al. T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat. Immunol. 12, 96-104 (2011).
校內:2022-12-31公開