簡易檢索 / 詳目顯示

研究生: 許家維
Hsu, Chia-wei
論文名稱: 非線性時間延遲系統模糊-H∞控制器之設計研究
Robust H∞ Controller Design for Nonlinear T-S Fuzzy System With Time Delay
指導教授: 黃正能
Huang, Cheng-neng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 模糊H∞非線性系統強健控制
外文關鍵詞: Nonlinear System, H∞, TS Fuzzy, Robust
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於未知系統參數的變動或系統內部改變的不確定性,很可能造成非線性受控系統的工作性能下降,以及系統追蹤性能的目標不易達成,甚至造成閉迴路系統不穩定。此外,受控系統變數的測量、本身物理特性或是訊號傳輸均可能造成系統具有時間延遲特性,本文所提出T-S模糊H∞控制器可處理追蹤性能與時間延遲的問題。
    模糊控制器的優點在於使用知識庫的模糊規則來設計控制器,不需要明確的數學模式。使用T-S模糊模型可以簡單的描述非線性時間延遲系統。而H∞控制器的特色是可使受控體在不確定外擾作用及系統參數變動情況下,仍可維持系統的穩定性與強健性。本文結合T-S 模糊模型與H∞控制理論的優點,針對時間延遲系統發展出穩定且具有良好性能的模糊-H∞控制器。
    最後,本文針對拖車系統作為電腦模擬控制對象,來驗證針對時間延遲系統所設計之T-S模糊-H∞控制器可行性。經由模擬結果顯示可達到不錯的追蹤性能,並有效降低外系統矩陣不確定性因素的影響。

    Since the system performance or the desired specifications is hard to be achieved when there is any unknown or uncertain variables, which could even make systems unstable, and since we also need to consider the system’s delay factors caused from measurement of system variables, system physical properties or signal transmission, a TS (Takaki-Sugeno) Fuzzy- H∞ control law is proposed in the thesis in dealing with the performance-matching and the time-delay problems.
    One of the advantages of Fuzzy control theorem is that the controller can be designed by using rules of data base without knowing actual system model. Besides, the nonlinear terms of systems may be included in TS Fuzzy model by rules. Because the characteristic of H∞ controller is to preserve the close-loop stability and robustness of the system, composite TS-Fuzzy H∞ controller, which contains the benefits of both H∞ controller and TS Fuzzy controller, is proposed in this thesis to handle both the system uncertain disturbances and system variable variations, especially for systems with time delay.
    Finally, an example with uncertain nonlinear terms is given to illustrate the effectiveness of the proposed approaches. The computer simulation results reveal that the proposed TS Fuzzy-H∞ controller scheme is feasible to reject the system uncertainties or disturbances effectively with good tracking performance.

    中文摘要…………………………………………………………………I 英文摘要………………………………………………………………II 致謝……………………………………………………………………III 目錄……………………………………………………………………IV 表目錄………………………………………………………………VII 圖目錄………………………………………………………………VIII 第一章 緒論……………………………………………………………1 1-1 研究動機………………………………………………………1 1-2 文獻回顧………………………………………………………2 1-3 論文架構………………………………………………………4 第二章 模糊控制理論…………………………………………………5 2-1 簡介……………………………………………………………5 2-2基本模糊理論………………………………………………………5 2-2-1模糊集合………………………………………………………5 2-2-2模糊歸屬函數…………………………………………………6 2-3模糊控制器…………………………………………………………7 2-3-1模糊化機構…………………………………………………7 2-3-2模糊知識庫…………………………………………………8 2-3-3模糊邏輯推論決策機構……………………………………9 2-3-4解模糊化機構………………………………………………11 2-4模糊控制器設計步驟………………………………………………12 第三章 H∞控制理論…………………………………………………14 3-1 前言………………………………………………………………14 3-2 Norm的定義………………………………………………………14 3-3擴增系統矩陣………………………………………………………18 3-4H∞控制理論………………………………………………………23 3-4-1 Doyle之H∞控制器理論…………………………………23 3-4-2變異漸近法…………………………………………………24 3-5H∞控制問題之流程………………………………………………25 第四章 結合模糊與H∞理論之控制器設計…………………………26 4-1模糊動態方程式之描述……………………………………………26 4-2標準模糊T-S-H∞擴增動態方程式之設計………………………27 4-3模糊T-S-H∞狀態回授控制器之設計……………………………31 4-4模糊T-S-H∞動態系統方程式……………………………………39 4-5模糊T-S-H∞控制器設計流程總結………………………………43 第五章 電腦模擬………………………………………………………45 5-1拖車系統……………………………………………………………45 第六章 結論……………………………………………………………69 參考文獻………………………………………………………………71 表目錄 表2.1模糊集合與傳統集合的比較……………………………………6 表5.1不同範例所選取之ρ、γ值………………………………………52 圖目錄 圖2.1三角形歸屬函數圖………………………………………………6 圖2.2梯形歸屬函數圖…………………………………………………7 圖2.3吊鐘形歸屬函數圖………………………………………………7 圖2.4模糊控制器架構…………………………………………………13 圖3.1波德圖(Bode plot)上H∞控制問題的意義…………………17 圖3.2奈奎斯特圖(Nyquist plot)上H∞控制問題的意義………17 圖3.3原始系統G(s)狀態空間方塊圖…………………………………18 圖3.4擴增系統P(s)狀態空間方塊圖…………………………………19 圖3.5H∞控制簡化擴增系統方塊圖…………………………………22 圖4.1模糊T-S-H∞控制器設計流程圖………………………………44 圖5.1拖車系統示意圖…………………………………………………45 圖5.2歸屬函數圖………………………………………………………50 圖5.3最終動態方程式下,ρ=0.9、γ=1.3 系統奇異值圖…………60 圖5.4最終動態方程式下,ρ=0.9、γ-1.3 系統狀態響應圖………60 圖5.5最終動態方程式下,ρ=0.9、γ=1.3 系統控制力圖…………61 圖5.6最終動態方程式下,ρ=0.9、γ=1.3 系統輸出誤差響應圖…61 圖5.7最終動態方程式下,ρ=0.3、γ=0.51 系統奇異值圖…………62 圖5.8最終動態方程式下,ρ=0.3、γ=0.51 系統狀態響應圖………62 圖5.9最終動態方程式下,ρ=0.3、γ=0.51 系統控制力圖…………63 圖5.10最終動態方程式下,ρ=0.3、γ=0.51 系統輸出誤差響應圖63 圖5.11最終動態方程式下,ρ=0.00001、γ=2.31系統奇異值圖…64 圖5.12最終動態方程式下,ρ=0.00001、γ=2.31系統狀態響應圖…64 圖5.13最終動態方程式下,ρ=0.00001、γ=2.31系統控制力圖……65 圖5.14最終動態方程式下,ρ=0.00001、γ=2.31系統輸出誤差響應圖65 圖5.15 a最終動態方程式下,ρ=0.9、γ=1.3系統輸出誤差響應圖66 圖5.15 b系統輸出誤差響應圖[2]………………………………… 66 圖5.16 a最終動態方程式下,ρ=0.9、γ=1.3系統控制力圖………66 圖5.16 b系統控制力圖[2] …………………………………………66 圖5.17最終動態方程式下,ρ=0.9、γ=1.3系統奇異值圖…………66 圖5.18最終動態方程式下,ρ=0.9、γ=1.3系統輸出誤差響應圖…66 圖5.19 a最終動態方程式下,ρ=0.01、γ=2 系統輸出誤差響應圖67 圖5.19 b系統輸出誤差響應圖[2] …………………………………67 圖5.20 a最終動態方程式下,ρ=0.01、γ=2系統控制力圖…………67 圖5.20 b系統控制力圖[2] …………………………………………67 圖5.21最終動態方程式下,ρ=0.01、γ=2系統奇異值圖……………67 圖5.22最終動態方程式下,ρ=0.01、γ=2系統輸出誤差響應圖……67

    [1] Andrzej Piegat, “Fuzzy Modeling and Control”, Physica-Verlag, 2001

    [2] Bing Chen and Xiaoping Liu, “Delay-Dependent Robust H∞ Control for T-S Fuzzy Systems With Time Delay”, IEEE Transactions on Fuzzy Systems, pp. 544-556, VOL. 13, No. 4, August 2005

    [3] C.N. Hwang, “Tracking of controllers for robot manipulators”, Master Dissertation, Michigan state University, 1986

    [4] C.N. Hwang, “Synthesis Procedure for Nonlinear Systems”, Proc. Natl. Sci. Counc. ROC(A) Vol. 17 ,No. 4,. pp. 279-294 ,1993

    [5] C.N. Hwang, “Formulation of H2 and H∞ Optimal Control Problems – A Variational Approach,” Journal of the Chinese Institute of Engineering’s, Vol. 16, No. 6, pp.853-866, 1993.

    [6] Doyle, J.C.,Glover, K., Khargonekar, P.P. and Francis, B.A., “State-Space Solutions to Standard H2 and H∞ Control Problems,” IEEE Transactions on Automatic Control, Vol. 34, No.8, pp.831-847, 1989.

    [7] G. K. Park and M. Sugeno,”Learning based on linguistic instructions using fuzzy theory,” in Proc. 8th Fuzzy System Symp., May 1992, pp561-564, in Japanese.

    [8] K. Takagi, and M. Sugeno,”Fuzzy identification of systems and its application to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, pp. 116-132, Jan. 1985.

    [9] K. Tanaka and M. Sugeno, ’’Stability analysis and design of fuzzy control systems,’’ Fuzzy Sets and Systems 45, pp.135-156 ,1992

    [10] Kazuo Tanaka and Manabu Sano, “A Robust Stabilization Problem of Fuzzy Controll Systems and Its Application to Backing up Control of a Truck-Trailer”, IEEE Transactions on Fuzzy Systems, pp. 119-134, VOL. 2, No. 2, MAY 1994

    [11] Kazuo Tanaka, Hua O. Wang, “Fuzzy Control Systems Design and Analysis A Linear Matrix Inequality Approach”, John Wiley & Sons, 2001

    [12] Keqin Gu, Vladimir L. Kharitonov, Lie Chen, “Stability of Time-Delay Systems”, Birkhauser, 2003

    [13] Lihua Xie and Carlos E. de Souza. ’’Robust H∞ control for linear systems with norm bounded time varying uncertainty’’, IEEE Trans. Automat. Control 37, pp.1188-1191 ,1992

    [14] M. Malek-Zavarei, M. Jamshidi, “Time-Delay Systems Analysis, Optimization and Applications”, North-Holland Systems and Control Series, 1987

    [15] Vikram Kapila, Wassim M. Haddad, “Robust stabilization for systems with parametric uncertainty and time delay”, Journal of the Franklin Institute 336 (1999) 473-480

    [16] V. Volterra, Lecons sur les equations integrals etles equations integro-differentielles, Gauthier-Villars, Paris, 1913.

    [17] Yu-Cheng Lin and Ji-Chang Lo, “Robust Mixed H2/ H∞ Filtering Time-delay Fuzzy Systems ”, IEEE Transactions on signal Processing, pp. 2897-2909, VOL. 54, No. 8, August 2006

    [18] Y. Y. Cao and P. M. Frank,“Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models”, Fuzzy Sets Syst., vol. 124, no.2, pp.213-229,2001

    [19] Wassim M. Haddad, Dennis S. Bernstein,“Generalized Riccati Equations for the Full- and Reduced-Order Mixed-Norm H2/H∞ Standard Problem”, Systems Control Lett. 14(1990) 185-197
    [20] Zadeh, L. A.,”Fuzzy sets,” Information Contr., vol. 8, pp. 338-353, 1965

    [21] 楊憲東、葉芳柏,”線性與非線性H∞控制理論”,全華科技圖書股份有限公司,1997。

    [22] 孫宗瀛,楊英魁,“Fuzzy 控制:理論、實作與應用”,全華科技圖書股份有限公司,2005

    [23] 吳昇燁、黃正能,”非線性模糊-H∞控制器之設計研究”,國立成功大學系統及船舶機電工程研究所碩士論文,2008。

    下載圖示 校內:2014-08-28公開
    校外:2019-08-28公開
    QR CODE