簡易檢索 / 詳目顯示

研究生: 林弘欣
Lin, Hung-Sin
論文名稱: 應用雙機械手臂於超音波引導射頻消融手術
Application of Dual Robotic Arms in Ultrasound Guided Radiofrequency Ablation Surgery
指導教授: 陳家進
Chen, Jia-Jian
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 36
中文關鍵詞: 射頻熱消融雙機械手臂系統超音波引導機器人針引導系統
外文關鍵詞: Radiofrequency ablation, Dual robotic arms system, Ultrasound guided, Robot needle guidance system.
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症近年來一直都穩坐台灣十大死因之首位,而肝細胞癌更是所有癌症中發生率最高的,肝癌的最常見的治療一般有手術切除、酒精注射、動脈栓塞治療、消融治療等,射頻消融術則具有手術傷口較小且術後副作用少等優點,所以是近年來最常見肝腫瘤治療術,治療方式是在超音波的精確導引下,將消融針插入肝腫瘤中並放出射頻電波,而組織會受到電波激盪擾動使溫度上升,進而將腫瘤細胞燒灼及破壞掉,但在臨床應用常因為徒手插入消融針的精準度低且超音波引導不易,造成手術消融不全,進而導致術後復發率上升。所以本研究為了輔助外科醫生更準確地進行射頻消融術,因此開發一套雙機械手臂輔助超音波引導射頻消融手術系統。在該系統中,以超音波影像為主要引導並以電腦斷層影像作為輔助判斷,引導機械手臂將消融針準確地插入腹部假體中,高系統精準度是本研究的重點。研究中分成硬體校正及手術系統開發,硬體校正部分主要有雙機械手臂整合校正、超音波影像空間校正,手術消融針定位註冊。手術系統操作是根據實際手術流程設計,主要有超音波掃描、手術路徑規劃、超音波引導消融針插入。在驗證實驗結果中,雙機械手臂的重複精準度為0.314±0.052mm,超音波影像定位精準度為0.759 ± 0.296 mm,最終以超音波影像引導機械手臂插入消融針至腹部假體中的精準度為1.867 ± 0.436 mm。實驗證明,硬體校正和系統設計的準確性對機器人輔助 RFA 系統有很大影響。未來在實際臨床應用中如果可在系統中加入即時超音波影像辨識、超音波及電腦斷層影像的融合、機械手臂即時補償等功能,系統將會更加完善,更適合臨床應用。

    Cancer has been the top 10 causes of death in Taiwan in recent years, and hepatocellular carcinoma (HCC) is common among all cancers. The common treatments for liver cancer include surgical resection, alcohol injection, arterial embolization, and thermal ablation. Radiofrequency ablation (RFA) is one of the most common treatments for liver tumors in recent years because of its smaller incision size and fewer postoperative side effects. RFA treatment involves inserting an ablation probe into the liver tumor and emitting radiofrequency waves under ultrasound guided. The radiofrequency waves will generate ion agitation and friction heating for the tissue to destroy the tumor. Due to the low accuracy of the freehand insertion of the ablation probe and the difficulty of ultrasound guided, incomplete surgical ablation in clinical practice might lead to the potential increase of postoperative recurrence rate. Therefore, to assist surgeons in performing RFA more accurately, a dual robotic arm assisted ultrasound-guided radiofrequency ablation system was developed in this study. In this system, we used ultrasound images as the main guidance and computed tomography images as auxiliary judgment to guide the robotic arm to insert the ablation needle into the abdominal phantom accurately. This study was divided into the hardware calibration and the surgical system development. The hardware calibration includes the integrated calibration of dual robotic arms, the spatial calibration of ultrasound images, and the registration of surgical ablation probes. The operation of the surgical system was designed according to the actual surgical procedures, mainly including ultrasound scanning, surgical path planning and ultrasound guided ablation probe insertion. Our verification experiment showed that repeatable accuracy of the dual robotic arm was 0.314±0.052mm, the positioning accuracy of the ultrasound image was 0.759 ± 0.296mm, and the accuracy of the insertion of the ablation needle into the abdominal phantom guided by ultrasound image was 1.867 ± 0.436mm. The accuracy of the hardware calibration and system design was proven to greatly influence the accuracy of robot-assisted RFA system. In the future, the system will be applied for clinical application with inclusion of real-time ultrasound image identification, a fusion of ultrasound and computed tomography, and instant compensation of robotic arm.

    摘要 I Abstract II Content IV List of Figures VI List of Tables VII Chapter 1 Introduction 1 1.1 Radiofrequency Ablation Surgery (RFA) 1 1.2 Image-guided RFA surgery 3 1.3 Robotic surgery 4 1.3.1 Robotic ultrasound system (RUS) 4 1.3.2 Robot needle guidance system 5 1.4 The aims of this study 6 Chapter 2 Materials and Methods 7 2.1 Hardware architecture and description 7 2.2 System operation flow 9 2.3 Preoperative procedures 10 2.3.1 Calibration of dual robotic arm 10 2.3.2 Calibration of ultrasound image 11 2.3.3 Registration of RFA probe 16 2.4 Operative procedure 16 2.4.1 Ultrasound image scanning and surgical path planning 16 2.4.2 Ultrasound guided RFA probe insertion 17 2.4.3 System accuracy verification 18 Chapter 3 Results 19 3.1 Verification of dual robotic arm calibration 19 3.2 Verification of ultrasound image calibration 22 3.3 Development of operative procedures in phantom 25 3.3.1 Ultrasound image scanning and surgical path planning 25 3.3.2 Ultrasound guided RFA probe insertion 27 3.3.3 System accuracy verification 29 Chapter 4 Discussion and Conclusion 31 4.1 Dual robotic arm calibration 31 4.2 Ultrasound image calibration 31 4.3 Accuracy of US-guided dual robotic arm RFA surgery system 32 4.4 Conclusion and future work 33 References 34

    Aalamifar, F., Cheng, A., Kim, Y., Hu, X., Zhang, H. K., Guo, X., & Boctor, E. M. (2016). Robot-assisted automatic ultrasound calibration. International Journal of Computer Assisted Radiology and Surgery, 11(10), 1821-1829. doi:10.1007/s11548-015-1341-8
    Abdullah, B. J. J., Yeong, C. H., Goh, K. L., Yoong, B. K., Ho, G. F., Yim, C. C. W., & Kulkarni, A. (2015). Robotic-assisted thermal ablation of liver tumours. European Radiology, 25(1), 246-257. doi:10.1007/s00330-014-3391-7
    An, C. Y., Syu, J. H., Tseng, C. S., & Chang, C.-J. (2017). An Ultrasound Imaging-Guided Robotic HIFU Ablation Experimental System and Accuracy Evaluations. Applied bionics and biomechanics, 2017, 5868695-5868695. doi:10.1155/2017/5868695
    Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239-256. doi:10.1109/34.121791
    Bo, X.-W., Xu, H.-X., Wang, D., Guo, L.-H., Sun, L.-P., Li, X.-L., . . . Zhang, K. (2016). Fusion imaging of contrast-enhanced ultrasound and contrast-enhanced CT or MRI before radiofrequency ablation for liver cancers. The British Journal of Radiology, 89(1067), 20160379. doi:10.1259/bjr.20160379
    Cartier, V., Boursier, J., Lebigot, J., Oberti, F., Fouchard-Hubert, I., & Aubé, C. (2016). Radiofrequency ablation of hepatocellular carcinoma: Mono or multipolar? Journal of Gastroenterology and Hepatology, 31(3), 654-660. doi:https://doi.org/10.1111/jgh.13179
    Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A, 4(4), 629-642. doi:10.1364/JOSAA.4.000629
    Hsu, P.-W., Prager, R. W., Gee, A. H., & Treece, G. M. (2009). Freehand 3D Ultrasound Calibration: A Review. In C. W. Sensen & B. Hallgrímsson (Eds.), Advanced Imaging in Biology and Medicine: Technology, Software Environments, Applications (pp. 47-84). Berlin, Heidelberg: Springer Berlin Heidelberg.
    João, R., Maria, R., Stephen, T., Philip, E., Crispin, S., Kurinchy, G., . . . Matthew, J. C. (2017). Breathing motion compensated registration of laparoscopic liver ultrasound to CT. Paper presented at the Proc.SPIE.
    Kettenbach, J., & Kronreif, G. (2015). Robotic systems for percutaneous needle-guided interventions. Minim Invasive Ther Allied Technol, 24(1), 45-53. doi:10.3109/13645706.2014.977299
    Koethe, Y., Xu, S., Velusamy, G., Wood, B. J., & Venkatesan, A. M. (2014). Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study. Eur Radiol, 24(3), 723-730. doi:10.1007/s00330-013-3056-y
    Kojcev, R., Fuerst, B., Zettinig, O., Fotouhi, J., Lee, S. C., Frisch, B., . . . Navab, N. (2016). Dual-robot ultrasound-guided needle placement: closing the planning-imaging-action loop. International Journal of Computer Assisted Radiology and Surgery, 11(6), 1173-1181. doi:10.1007/s11548-016-1408-1
    Komaki, T., Hiraki, T., Kamegawa, T., Matsuno, T., Sakurai, J., Matsuura, R., . . . Kanazawa, S. (2020). Robotic CT-guided out-of-plane needle insertion: comparison of angle accuracy with manual insertion in phantom and measurement of distance accuracy in animals. European Radiology, 30(3), 1342-1349. doi:10.1007/s00330-019-06477-1
    Levin, A. A., Klimov, D. D., Nechunaev, A. A., Vorotnikov, A. A., Prokhorenko, L. S., Grigorieva, E. V., . . . Panchenkov, D. N. (2020). The comparison of the process of manual and robotic positioning of the electrode performing radiofrequency ablation under the control of a surgical navigation system. Scientific reports, 10(1), 8612-8612. doi:10.1038/s41598-020-64472-9
    Meyer, B. C., Brost, A., Kraitchman, D. L., Gilson, W. D., Strobel, N., Hornegger, J., . . . Wacker, F. K. (2013). Percutaneous punctures with MR imaging guidance: comparison between MR imaging-enhanced fluoroscopic guidance and real-time MR Imaging guidance. Radiology, 266(3), 912-919. doi:10.1148/radiol.12120117
    Minami, Y., & Kudo, M. (2011). Radiofrequency Ablation of Hepatocellular Carcinoma: A Literature Review. International Journal of Hepatology, 2011, 104685. doi:10.4061/2011/104685
    Najafi, M., Afsham, N., Abolmaesumi, P., & Rohling, R. (2014). A Closed-Form Differential Formulation for Ultrasound Spatial Calibration: Multi-wedge Phantom. Ultrasound in Medicine & Biology, 40(9), 2231-2243. doi:https://doi.org/10.1016/j.ultrasmedbio.2014.03.006
    Peng, Z.-W., Lin, X.-J., Zhang, Y.-J., Liang, H.-H., Guo, R.-P., Shi, M., & Chen, M.-S. (2012). Radiofrequency Ablation versus Hepatic Resection for the Treatment of Hepatocellular Carcinomas 2 cm or Smaller: A Retrospective Comparative Study. Radiology, 262(3), 1022-1033. doi:10.1148/radiol.11110817
    Priester, A. M., Natarajan, S., & Culjat, M. O. (2013). Robotic ultrasound systems in medicine. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(3), 507-523. doi:10.1109/TUFFC.2013.2593
    Sarrazin, J., Promayon, E., Baumann, M., & Troccaz, J. (2015, 25-29 Aug. 2015). Hand-eye calibration of a robot - UltraSound probe system without any 3D localizers. Paper presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
    Seror, O., N’Kontchou, G., Van Nhieu, J. T., Rabahi, Y., Nahon, P., Laurent, A., . . . Sellier, N. (2014). Histopathologic Comparison of Monopolar versus No-Touch Multipolar Radiofrequency Ablation to Treat Hepatocellular Carcinoma within Milan Criteria. Journal of Vascular and Interventional Radiology, 25(4), 599-607. doi:https://doi.org/10.1016/j.jvir.2013.11.025
    Shen, C., Lyu, L., Wang, G., & Wu, J. (2019). A method for ultrasound probe calibration based on arbitrary wire phantom. Cogent Engineering, 6(1), 1592739. doi:10.1080/23311916.2019.1592739
    Thai, M. T., Phan, P. T., Hoang, T. T., Wong, S., Lovell, N. H., & Do, T. N. (2020). Advanced Intelligent Systems for Surgical Robotics. Advanced Intelligent Systems, 2(8), 1900138. doi:https://doi.org/10.1002/aisy.201900138
    Wang, Y., Luo, Q., Li, Y., Deng, S., Wei, S., & Li, X. (2014). Radiofrequency Ablation versus Hepatic Resection for Small Hepatocellular Carcinomas: A Meta-Analysis of Randomized and Nonrandomized Controlled Trials. PLOS ONE, 9(1), e84484. doi:10.1371/journal.pone.0084484
    Wartenberg, M., Schornak, J., Gandomi, K., Carvalho, P., Nycz, C., Patel, N., . . . Fischer, G. S. (2018). Closed-Loop Active Compensation for Needle Deflection and Target Shift During Cooperatively Controlled Robotic Needle Insertion. Annals of biomedical engineering, 46(10), 1582-1594. doi:10.1007/s10439-018-2070-2
    Won, H. J., Kim, N., Kim, G. B., Seo, J. B., & Kim, H. (2017). Validation of a CT-guided intervention robot for biopsy and radiofrequency ablation: experimental study with an abdominal phantom. Diagn Interv Radiol, 23(3), 233-237. doi:10.5152/dir.2017.16422
    Zhang, D., Li, Z., Chen, K., Xiong, J., Zhang, X., & Wang, L. (2013). An optical tracker based robot registration and servoing method for ultrasound guided percutaneous renal access. Biomed Eng Online, 12, 47. doi:10.1186/1475-925x-12-47
    Zhou, Y., Thiruvalluvan, K., Krzeminski, L., Moore, W. H., Xu, Z., & Liang, Z. (2013). CT-guided robotic needle biopsy of lung nodules with respiratory motion - experimental system and preliminary test. Int J Med Robot, 9(3), 317-330. doi:10.1002/rcs.1441

    下載圖示 校內:2024-08-02公開
    校外:2024-08-02公開
    QR CODE