簡易檢索 / 詳目顯示

研究生: 謝孝勇
Hsieh, Hsiao-Yung
論文名稱: 人工智慧於混凝土橋梁裂縫快篩雲端平台開發之研究
Development of an AI-Based Cloud Platform for Rapid Screening of Concrete Bridge Deterioration Cracks
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 143
中文關鍵詞: 橋梁檢測深度學習人工智能裂縫影像辨識自動化BIM 建築資訊建模應用
外文關鍵詞: Bridge inspection, deep learning, artificial intelligence, crack image detection, automation, BIM application
ORCID: https://orcid.org/0009-0005-5629-2721
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 橋梁檢測工作通常需要檢測人員拍攝數百至上千張圖片,耗費大量時間進行檢視。為提高檢測效率並減少遺漏,本研究開發了「自動化裂縫影像雲端辨識系統」以及應用程式「auto predictor」,實現混凝土橋梁的裂縫自動辨識,或通過本研究設計的劣化偵測網站上傳劣化圖片進行混凝土橋梁的裂縫辨識。此雲端平台結合「橋梁BIM雲端管理系統」,工程人員可依據結構設計圖建立BIM橋梁模型,並儲存至雲端。在劣化檢測過程中,檢測人員能拍照記錄裂縫,並整合模型與裂縫的資訊及描述。在訓練裂縫影像辨識模型方面,本研究使用台灣地區長期橋梁檢測所拍攝的劣化圖片,這些圖片涵蓋多種實際環境條件,並挑選出具有裂縫特徵的圖片。透過有效的劣化標註策略,考量複合性劣化的標註方式,搭配YOLOv4與YOLOv7演算及本研究所建議的參數進行比較,最終獲得良好的模型供系統使用。研究結果顯示,在自動化裂縫影像雲端辨識系統中,隨機挑選的測試集劣化圖片,包括橋梁檢測及短梁剪力實驗後的試體,其裂縫皆可成功辨識。在「自動化裂縫影像雲端辨識系統」與「橋梁BIM雲端管理系統」的深度結合中,不僅能自動辨識構件裂縫,還能生成裂縫位置圖表及相關資訊。這一創新整合為決策者提供直觀的視覺化數據,展現出卓越的應用潛力與未來發展前景。採用YOLOv7演算法的模型達到87.64%的平均準確率(mAP),顯著提升橋梁檢測效率,展現良好應用潛力。

    Bridge inspection work typically requires inspectors to take hundreds to thousands of pictures, consuming a significant amount of time for review. To improve inspection efficiency and reduce omissions, this study developed an "Automated Crack Image Cloud Detection System" and the application "Auto Predictor," which enables automatic identification of concrete bridge cracks or allows users to upload deteriorated images for concrete bridge detection through a deterioration detection website designed in this study. This cloud platform integrates with the "Bridge BIM Cloud Management System," allowing engineers to create BIM bridge models based on structural design drawings and store them in the cloud. During the deterioration inspection process, inspectors can take photos to document cracks and integrate information and descriptions of the model and cracks. In training the crack image detection model, this study used deteriorated images captured during long-term bridge inspections in Taiwan, which encompass various real-world environmental conditions, selecting images that exhibit crack features. Through effective deterioration labeling strategies, considering the labeling methods for complex deterioration, and comparing calculations using YOLOv4 and YOLOv7 with the parameters recommended in this study, a robust model was ultimately obtained for system use. The research results show that in the Automated Crack Image Cloud Detection System, randomly selected test set deterioration images, including those from bridge inspections and specimens after short beam shear experiments, were all successfully identified for cracks. In the deep integration of the "Automated Crack Image Cloud Detection System" and the "Bridge BIM Cloud Management System," it is not only possible to automatically identify component cracks but also to generate crack location charts and related information. This innovative integration provides decision-makers with intuitive visual data, demonstrating exceptional application potential and future development prospects. The YOLOv7-based model achieved a mean Average Precision (mAP) of 87.64%, significantly improving bridge inspection efficiency and demonstrating exceptional application potential.

    摘要 I 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與研究目的 1 1.3 研究內容 2 第二章 文獻回顧 4 2.1國內外橋梁管理系統 4 2.2建築資訊建模BIM的應用 5 2.2.1 BIM 技術在橋梁管理中的發展與應用 5 2.2.2 BIM 與傳統檢測方法的融合創新 6 2.3深度學習技術 7 2.3.1 深度學習在影像辨識中的發展與YOLO 7 2.3.2 深度學習在土木工程中的應用 8 2.4雲端系統 10 2.4.1 HTTP協定與資源管理 10 2.4.2 MVC架構、Web應用程式設計與雲端部署與擴展策略 10 第三章 劣化圖片與標註 12 3.1劣化類型 12 3.2劣化圖片之篩選 13 3.3劣化標註 14 3.3.1 劣化標註工具 14 3.3.2 劣化標註原則 16 第四章 深度學習影像辨識模型 28 4.1 物件偵測模型YOLO 28 4.1.1 YOLOv7與YOLOv4 28 4.1.2 模型評估指標 29 4.1.3 模型訓練流程 32 4.2 硬體設備 33 4.2.1 雲端計算平台- google colaboratory 33 4.2.2 個人電腦工作站 34 第五章 雲端平台開發與驗證 41 5.1設計Web API 41 5.2建置Server系統 42 5.2.1 交換器與路由器 43 5.2.2 通訊協HTTP-message 44 5.3設計劣化偵測網站 45 5.3.1 前端與後端的設計 45 5.3.2 網站功能的成果展示 47 5.4自動化裂縫影像雲端辨識系統 48 5.4.1 劣化偵測模組的設計 49 5.4.2 資料分析模組的設計 51 5.4.3 圖片編碼與解碼- Base64格式 52 5.4.4 橋梁BIM雲端管理系統 53 5.4.5 自動化裂縫影像雲端辨識系統結合BIM系統 54 5.5雲端平台的驗證 55 5.5.1 裂縫影像辨識模型的評估指標表現 56 5.5.2 自動化裂縫影像雲端辨識系統驗證測試資料集 57 5.5.3 自動化裂縫影像雲端辨識系統與橋梁BIM雲端管理系統驗證 58 5.6小結 59 第六章 結論與建議 79 6.1 結論 79 6.2 建議 81 參考文獻 84 附錄一: auto predictor應用程式python檔案 92 附錄二: 劣化偵測模組python檔案 106 附錄三: 資料分析模組python檔案 113 附錄四: Web API設計PHP檔案 122

    英文參考文獻
    AlexeyAB. (2021). Open source darknet YOLOv4. Retrieved 2021, from GitHub: https://github.com/AlexeyAB/darknet
    ASCII. (n.d.). Retrieved 2022, from ASCII Table: https://www.asciitable.com
    Azhar, S., Nadeem, A., Mok, J. Y., & Leung, B. H. (2008). Building Information Modeling (BIM): A new paradigm for visual interactive modeling and simulation for construction projects. Proceedings of the First International Conference on Construction in Developing Countries, 1, pp. 435-446. Retrieved from https://www.academia.edu/download/35698780/045.pdf
    Berners-Lee, T., Fielding, R., & Frystyk, H. (1996, May). Hypertext transfer protocol--HTTP/1.0,RFC 1945. Retrieved 2022, from https://doi.org/10.17487/RFC1945
    Beskopylny, A. N., Shcherban', E. M., Stel'makh, S. A., Mailyan, L. R., Meskhi, B., Razveeva, I., . . . Onore, G. (2023). Detecting Cracks in Aerated Concrete Samples Using a Convolutional Neural Network. Applied Sciences, 13(3), p. 1904. Retrieved from https://doi.org/10.3390/app13031904
    Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint. Retrieved from https://doi.org/10.48550/arXiv.2004.10934
    Burns, B., Beda, J., & Hightower, K. (2019). Kubernetes: Up and Running: Dive into the Future of Infrastructure. Sebastopol, CA, USA: O'Reilly Media.
    Byun, N., Han, W. S., Kwon, Y. W., & Kang, Y. J. (2021, May). Development of BIM-based bridge maintenance system considering maintenance data schema and information system. Sustainability, 13(9), p. 4858. Retrieved from https://doi.org/10.3390/su13094858
    Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. European Conference on Computer Vision (ECCV). Retrieved from https://doi.org/10.48550/arXiv.2005.12872
    Chang, C.-Y., Chen, L.-C., & Ma, C.-C. (2017). Three-dimensional measurement of dynamic full-field displacement by stereo DIC using one high-speed camera. 15th Asia Pacific Conference for Non-Destructive Testing. 23(3). Singapore: e-Journal of Nondestructive Testing. Retrieved from https://www.ndt.net/?id=22148
    Cheng, J., & Ma, Z. (2019). A Review of Building Information Modeling in Bridge Management: Current Research and Future Directions. Advances in Civil Engineering, 2019, pp. 1-12. Retrieved from https://doi.org/10.1155/2019/7681836
    Cremona, C. (2003). Application of the French assessment approach to bridge maintenance strategies. Structural Engineering International, 13(3), pp. 195-200.
    Dang, J., Chun, P.-J., Mizumoto, T., Liu, J., & Fujishima, T. (2021). Multi-type bridge damage detection method based on YOLO. Japan Society of Civil Engineers. Intelligence, Informatics and Infrastructure, 2, pp. 447-456. Retrieved from https://doi.org/10.11532/jsceiii.2.J2_447
    Davila Delgado, J. M., Butler, L. J., Gibbons, N., Brilakis, I., Elshafie, M. Z., & Middleton, C. (2017). Management of structural monitoring data of bridges using BIM. Bridge Engineering, 170(3), pp. 204-218. Retrieved from https://doi.org/10.1680/jbren.16.00013
    Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., . . . Houlsby, N. (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. International Conference on Learning Representations(ICLR). Retrieved from https://doi.org/10.48550/arXiv.2010.11929
    Fielding, R. e. (1999, Jun.). Hypertext transfer protocol--HTTP/1.1,RFC 2616. Retrieved 2022, from https://www.frameip.com/rfc-2616-hypertext-transfer-protocol-http1-1/
    Golabi, K., & Shepard, R. (1997). Pontis: A system for maintenance optimization and improvement of US bridge networks. Interfaces, 27(1), pp. 71-88. Retrieved from https://doi.org/10.1287/inte.27.1.71
    Gonzalez, J., & Lichtenstein, M. (2020). Integrating BIM and Traditional Inspection Methods for Improved Bridge Management. International Journal of Civil Engineering, 18(6), pp. 1002-1014. Retrieved from https://doi.org/10.1007/s40940-020-00106-1
    Google. (n.d.). Google Colaboratory. Retrieved 2021, from https://colab.research.google.com/notebooks/intro.ipynb
    Guo, C., Lv, X., Zhang, Y., & Zhang, M. (2021, November). Improved YOLOv4-tiny network for real-time electronic component detection. Scientific Reports (Sci. Rep.), 11(1), p. 22744. Retrieved from https://doi.org/10.1038/s41598-021-02225-y
    Hawk, H., & Small, E. P. (1998). The BRIDGIT bridge management system. Structural Engineering International, 8(4), pp. 309-314. Retrieved from https://doi.org/10.2749/101686698780488712
    Hsieh, C.-Y. (2018). Integration of image processing, computer vision, and artificial intelligence to identify concrete surface cracks. M.S. thesis, Dept. Civil Eng., National Taiwan Univ. Taipei, Taiwan.
    Hsu, S.-H., Chang, T.-W., & Chang, C.-M. (2021). Concrete surface crack segmentation based on deep learning. Proceedings of the European Workshop on Structural Health Monitoring, 128, pp. 24-34. Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-64908-1_3
    Hypertext Transfer Protocol -- HTTP/1.1. (1999). Retrieved 2022, from World Wide Web Consortium(W3C): https://www.w3.org/Protocols/rfc2616/rfc2616.html
    Kassem, M., Kelly, G., Dawood, N., Serginson, M., & Lockley, S. (2015). BIM in facilities management applications: a case study of a large university complex. Built Environment Project and Asset Management, 5(3), pp. 261-277. Retrieved from https://doi.org/10.1108/BEPAM-02-2014-0011.
    Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M. (2022, September). Transformers in Vision: A Survey. ACM Computing Surveys, 54(10), pp. 1-41. Retrieved from https://doi.org/10.1145/3505244
    Krishnamurthy, B., Mogul, J. C., & Kristol, D. M. (1999, May). Key differences between HTTP/1.0 and HTTP/1.1. Computer Networks, 31(11-16), pp. 1737-1751. Retrieved from https://doi.org/10.1016/S1389-1286(99)00008-0
    Kruachottikul, P., Cooharojananone, N., Phanomchoeng, G., Muangsiri, W., & Silapachote, P. (2021). Deep learning-based visual defect-inspection system for reinforced concrete bridge substructure: A case of Thailand's department of highways. Journal of Civil Structural Health Monitoring, 11, pp. 949-965. Retrieved from https://doi.org/10.1007/s13349-021-00490-z
    Lauridsen, J., & Lassen, B. (1999). The Danish bridge management system DANBRO. In Bridge Management 4: Inspection, Maintenance, Assessment and Repair, (pp. 61-70).
    LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998, November). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), pp. 2278-2324. Retrieved from https://ieeexplore.ieee.org/document/726791
    Li, R., Yu, J., Li, F., Yang, R., Wang, Y., & Peng, Z. (2023). Automatic bridge crack detection using unmanned aerial vehicle and Faster R-CNN. Construction and Building Materials, 362, p. 129659. Retrieved from https://doi.org/10.1016/j.conbuildmat.2022.129659
    Lin, P. T., Yao, Y.-T., Chen, Y.-H., Lin, S. S., Chang, C.-Y., Liu, K.-Y., . . . Lu, L.-H. (2019). Stereovision-based automatic crack detection for 3D bridge inspection. 2nd World Congress on Condition Monitoring (WCCM), (p. 150). Singapore.
    Lin, Y. B., Lai, J. S., Chang, K. C., & Li, L. S. (2006). Flood scour monitoring system using fiber Bragg grating sensors. Smart Materials and Structures, 15(6), pp. 1950-1959. Retrieved from https://dx.doi.org/10.1088/0964-1726/15/6/051
    Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., . . . Guo, B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. International Conference on Computer Vision (ICCV). Retrieved from https://doi.org/10.48550/arXiv.2103.14030
    Lu, W.-H., Lin, S.-P., Lin, P. T., & Wu, Y.-W. (2018, September). Development and applications of artificial intelligence image recognition system. 19th Conference on Nondestructive Testing Technology (CNDT 2018), (p. 67). Taipei, Taiwan.
    Mandirola, M., Casarotti, C., Peloso, S., Lanese, I., Brunesi, E., & Senaldi, I. (2022). Use of UAS for damage inspection and assessment of bridge infrastructures. International Journal of Disaster Risk Reduction, 72, p. 102824. Retrieved from https://doi.org/10.1016/j.ijdrr.2022.102824
    Miyamoto, A., & Motoshita, M. (2015). Development and practical application of a bridge management system (J-BMS) in Japan. Civil Engineering Infrastructures Journal, 48(1), pp. 189-216.
    Opara, J. N., Thein, A. B., Izumi, S., Yasuhara, H., & Chun, P.-J. (2021). Defect detection on asphalt pavement by deep learning. GEOMATE Journal, 21(83), pp. 87-94. Retrieved from https://doi.org/10.21660/2021.83.6153
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, É. (2011). Scikit-learn: machine learning in Python. Journal of Machine Learning Research (J. Mach. Learn. Res.), 12, pp. 2825-2830. Retrieved from https://doi.org/10.48550/arXiv.1201.0490
    Rezaie, A., Achanta, R., Godio, M., & Beyer, K. (2020). Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials, 261, p. 120474. Retrieved from https://doi.org/10.1016/j.conbuildmat.2020.120474
    Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2022). Efficient Transformers: A Survey. ACM Computing Surveys, 55(6), pp. 1-28. Retrieved from https://doi.org/10.1145/3530811
    Thompson, P. D., Small, E. P., Johnson, M., & Marshall, A. R. (1998). The Pontis bridge management system. Structural Engineering International, 8(4), pp. 303-308. Retrieved from https://doi.org/10.2749/101686698780488758
    Tong, Z., Gao, J., & Zhang, H. (2018). Innovative method for recognizing subgrade defects based on a convolutional neural network. Construction and Building Materials, 169, pp. 69-82. Retrieved from https://doi.org/10.1016/j.conbuildmat.2018.02.081
    tzutalin. (2015). LabelImg. Retrieved 2021, from GitHub: https://github.com/tzutalin/labelImg
    Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 7464-7475).
    WongKinYiu. (2022). Open source YOLOv7. Retrieved 2023, from GitHub: https://github.com/WongKinYiu/yolov7
    Woodward, R. J., Cullington, D. W., Daly, A. F., Vassie, P. R., Haardt, P., Kashner, R., & Astudillo, R. (2001). Bridge management in Europe (BRIME): deliverable D14 final report. European Commission. European Commission.
    Yau, N. J., & Liao, H. K. (2007, Mar.). Development of bridge management systems in Taiwan. Journal of the Chinese Institute of Engineers, 30(2), pp. 307-315.
    Zhang, Q., Barri, K., Babanajad, S. K., & Alavi, A. H. (2021). Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain. Engineering, 7(12), pp. 1786-1796. Retrieved from https://doi.org/10.1016/j.eng.2020.07.026
    Zhang, Y., Zuo, Z., Xu, X., Wu, J., Zhu, J., Zhang, H., . . . Tian, Y. (2022, 12 1). Road damage detection using UAV images based on multi-level attention mechanism. Automation in Construction, 144, p. 104613. Retrieved from https://doi.org/10.1016/j.autcon.2022.104613
    Zhou, Y., Zhang, L., & Wang, X. (2021, Aug.). Integration of Building Information Modeling (BIM) and Machine Learning for Bridge Maintenance: A Case Study. Journal of Civil Engineering and Management, 27(8), pp. 621-634. Retrieved from https://doi.org/10.3846/jcem.2021.13819
    Zhou, Z. (2022). An intelligent bridge management and maintenance model using BIM technology. Mobile Information Systems, 2022(1), p. 7130546. Retrieved from https://doi.org/10.1155/2022/7130546
    Zhu, M. (2004). Recall, precision and average precision(Tech. Rep. 2004-09). Waterloo, ON, Canada: Department of Statistics and Actuarial Science, University of Waterloo. Retrieved from https://web.archive.org/web/20110504130953/http://sas.uwaterloo.ca/stats_navigation/techreports/04WorkingPapers/2004-09.pdf
    中文參考文獻
    交通部. (2018). 公路橋梁檢測及補強規範. 交通部頒布.
    交通部運輸研究所. (2021). 公路橋梁檢測人員培訓教材(初稿). 交通部運輸研究所.
    交通部運輸研究所. (2025年6月26日). 全國橋梁分類統計. 擷取自 全國橋梁統計資訊網: https://bss.iot.gov.tw/bss/country/statistics_all/list/
    宋裕祺, 陳俊仲, 賴明俊, 許家銓, 洪曉慧, & 劉光晏. (2014). 橋梁生命週期防災管理系統建置. 國家地震工程研究中心,報告編號:NCREE-2014-027.
    詹博帆. (2019). 影像辨識與深度學習在智慧交通系統的現況與未來展望. 中華技術(123), 頁 342-353.
    蔡宜真. (2024). 以無人機建立即時自動化橋梁裂縫影像辨識系統. 碩士論文,國立臺灣大學. 臺北市. 擷取自 https://doi.org/10.6342/NTU202402259
    謝孝勇, 劉光晏, 陳世海, & 林育賢. (2025). 應用YOLO於橋梁表面裂縫辨識與快篩之研究. 中國土木水利工程學刊, 37(1), 頁 75-88. 擷取自 https://doi.org/10.6652/JoCICHE.202503_37(1).0007
    蘇振維, 張舜淵, 楊幼文, 黃俊豪, 江明益, 姚乃嘉, . . . 廖艾貞. (2018). 第二代台灣地區橋梁管理資訊系統建置規劃(三). 交通部運輸研究所.

    無法下載圖示 校內:2030-06-24公開
    校外:2030-06-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE