簡易檢索 / 詳目顯示

研究生: 賴博文
Lai, Bo-Wen
論文名稱: 一種嶄新的影像壓縮方法:基於升級機制的小波轉換影像插值法
Novel Wavelet-Based Image Interpolations in Lifting Structures for Image Compression
指導教授: 郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 55
中文關鍵詞: 影像壓縮影像插值小波轉換進化規劃演算法
外文關鍵詞: Image compression, image interpolation, wavelet transform, evolutionary programming
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種基於升級機制的嶄新5/3和9/7小波轉換影像插值法以達到高品質的影像壓縮目的,並且針對個別影像提出進化規劃演算法做最佳化處理以進一步提升影像壓縮的品質。基於小波轉換後的低頻係數,本篇論文提出預測型演算法以預測將原始影像作小波轉換後的高頻係數,所以使用本文所提的預測型演算法得以將小波轉換後的低頻影像重建為原始影像,以達到影像壓縮的目的。由於奇數長度的小波濾波器其正中心係數主宰了小波轉換與反轉換的性能,所以對濾波後的小波係數做奇數或偶數的降階取樣會影響到原始影像的重建品質。因此,本篇論文在建構升級機制的奇數長度小波濾波器的低頻係數中,分別對原始影像的奇數和偶數像素做小波轉換。接著,在兩者之中選擇較好的那一個以匹配奇數小波濾波器(5/3和9/7)和原始影像的特性,以達到高品質的影像壓縮。為了更進一步改進原始影像的重建品質和驗證上述所提的演算法的最佳化程度,本篇論文同時提出了基於進化規劃演算法的影像插值法。經由實驗結果顯示,本篇論文提出的使用或不使用進化規劃的預測型演算法表現得比其它文獻所呈現的標準方法好,而且在不使用進化規劃的預測型演算法其時間複雜度也在可以接受的範圍內。

    Novel 5/3 and 9/7 wavelet-based image interpolations in lifting structures with/without involving the evolutionary programming (EP) for image compression are proposed in this paper. Based on the low-band wavelet coefficients, the proposed prediction algorithms estimate high-frequency wavelet coefficients of the original image, so the original image can be reconstructed from the low-band image by using the proposed prediction algorithms. Due to the characteristics of the odd-length wavelet filter which is dominated by the intermediate coefficient, taking even or odd downsampling of the filtered coefficients significantly dominants the image reconstruction performance. Therefore, constructing the low-band wavelet coefficients through the odd-length wavelet filter in lifting structure based on even and odd pixels of the original image are respectively performed in this paper. Then, select the better one to fit the characteristics of the odd-length wavelet filters such as 5/3 and 9/7 filters and the pre-specified image for high performance image compression. To further improve the reconstruction performance and show the optimality of the above-mentioned proposed algorithms, the EP-based image interpolations are also presented in this paper. The proposed prediction algorithms with/without EP outperform other standard methods, and the computational complexity without EP is also acceptable in the experimental results.

    Abstract II Table of contents IV List of Tables V List of Figures VI Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 Interpolation 4 2.2 Wavelet transform 5 2.2.1 Wavelet-based interpolation 7 2.2.2 Lifting scheme 8 Chapter 3 The proposed prediction algorithms 10 3.1 Prediction 10 3.1.1 5/3 filter based prediction algorithm 11 3.1.2 9/7 filter based prediction algorithm 16 3.2 Construction of LL-band for high performance compression 22 Chapter 4 EP-based optimal prediction filters 24 4.1 Evolutionary programming algorithm 26 Chapter 5 Experimental results 32 5.1 Experiment simulation 32 5.2 Simulation results 33 5.2.1 The results with total LL-band coefficients 33 5.2.2 The results at various bit rates 46 Chapter 6 Conclusion 51 References 53

    [1] T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” IEEE Transactions on Medical Imaging, vol. 18, no. 11, pp. 1049-1075, 1999.
    [2] R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust., Speech,Signal Processing, vol. 29, no. 6, pp. 1153-1160, 1981.
    [3] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Processing, vol. 10, no. 10, pp. 1521-1527, Oct. 2001.
    [4] X. Zhang and X. Wu, “Image interpolation by adaptive 2-d autoregressive modeling and soft-decision estimation,” IEEE Trans. Image Processing, vol. 17, no. 6, pp. 887-896, Jun. 2008.
    [5] H. C. Chen and W. J. Wang, “Locally edge-adapted distance for image interpolation based on genetic fuzzy system,” Expert Systems with Applications, vol. 37, no. 1, pp. 288-297, Jan. 2010.
    [6] Y. S. Park and H. W. Park, “Arbitrary-ratio image resizing using fast DCT of composite length for DCT-based transcoder,” IEEE Trans. Image Processing, vol. 15, no. 2, pp. 494-500, Feb. 2006.
    [7] S. M. Guo, C. B. Li, C. W. Chen, Y. C. Liao, and S. H. Tsai, “Enlargement and reduction of image/video via discrete cosine transform pair, part 1: novel three-dimensional discrete cosine transform and enlargement, ” Journal of Electron Imaging, vol. 16, no. 4, 043006, pp. 1-19, 2007.
    [8] W. K. Carey, D. B. Chuang, and S. S. Hemami, “Regularity-preserving image interpolation,” IEEE Trans. Image Processing, vol. 8, no. 9, pp. 1293-1297, Sep. 1999.
    [9] K. Kinebuchi, D. D. Muresan and T. W. Parks, “Image interpolation using wavelet-based hidden markov trees,” Proc. ICASSP01, vol. 3, pp. 7-11, May 2001.
    [10] J. Liu and P. Moulin, “Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients,” IEEE Trans. Image Processing, vol. 10, no. 11, pp. 1647-1658, Nov. 2001.
    [11] W. L. Lee, C. C. Yang, H. T. Wu, and M. J. Chen, “Wavelet-based interpolation scheme for resolution enhancement of medical images,” Journal of Signal Processing Systems, vol. 55, no. 1-3, pp. 251-265, 2009.
    [12] W. P. Lin, C. M. Chen, and Y. C. Chen, “Image compression with interpolation in wavelet-transform domain,” 2005 IEEE Int. Symposium on Circuits and Systems, pp. 2084 – 2087, May 2005.
    [13] Y. Piao, I. H. Shin, and H. W. Park, “Image resolution enhancement using inter-subband correlation in wavelet domain,” in Proc. ICIP, 2007, vol. 1, pp. 445-448.
    [14] A. Temizel and T. Vlachos, “Wavelet domain image resolution enhancement,” IEE Proc. Vis. Image SignalProcessing, vol. 153, no. 1, Feb. 2006.
    [15] Y. L. Huang, “Wavelet-based image interpolation using multilayer perceptrons,” Neural Computing & Applications, vol. 14, no. 1, pp. 1-10, Mar. 2005.
    [16] S. S. Kim, Y. S. Kim, and I. K. Eom, “Image interpolation using MLP neural network with phase compensation of wavelet coefficients,” Neural Computing & Applications, vol. 18, no. 8, pp. 967-977, Nov. 2009.
    [17] S. M. Guo, W. H. Chang, S. H. Tsai, “JPEG 2000 wavelet filter design framework with chaos evolutionary programming,” Signal Processing., vol. 88, pp. 2542-2553, 2008.
    [18] Fogel, D.B., Evolutionary computation: the fossil record, IEEE Press, Piscataway, New Jersey, pp. 3-14, 1998.
    [19] Goldberg, D.E., Genetic algorithm in search, optimization and machine learning, Addison-Wesley Reading, MA, pp. 59-88, 1989.
    [20] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674-693, July 1989.
    [21] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3, May 1998.
    [22] Halton, J.H., “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematik, vol. 2, pp. 84-90, with Corrigenda on p. 196, 1960.
    [23] The test images are from http://sipi.usc.edu/database/

    下載圖示 校內:2011-08-16公開
    校外:2011-08-16公開
    QR CODE