| 研究生: |
梁敏聖 Liang, Vincent Roderick |
|---|---|
| 論文名稱: |
細胞骨架相關蛋白質 Palladin 在肌肉生成之功能研究 Characterization of cytoskeleton-associated protein,palladin, in myogenesis |
| 指導教授: |
王浩文
Wang, Hao-Ven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 細胞骨架 、肌肉生成 |
| 外文關鍵詞: | myogenesis, palladin, apoptosis |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞骨架相關蛋白質palladin 在調控細胞貼附與細胞張力絲(stress fibers)的形成中扮演重要的角色。Palladin 主要含有三種isoforms,分別是200kDa、140kDa與90~92kDa 的isoforms,三種不同的isoforms 在小鼠個體內會表現在特定的組織當中,這也暗示著每種isoform 的功能與特性有所不同。小鼠在胚胎發育的過程中palladin 的存在極為重要,先前研究顯示,palladin 基因剔除的老鼠會在胚胎時期死亡。然而palladin 在骨骼肌發育的過程中所扮演的角色至今仍尚未明瞭。因此本研究利用小干擾RNA (siRNA) 抑制全部palladin isoforms 在C2C12 老鼠肌原母細胞(myoblast) 的表現,欲探討palladin 在肌肉生成時所扮演的功能。實驗首先將 siRNA 轉染入C2C12 肌原母細胞,結果顯示palladin 的表現成功地被抑制,此外並觀察到細胞生長的密度有降低的現象。進一步將palladin knockdown 的肌原母細胞誘導進行分化,發現其分化成為肌小管(myotube)的時間會延後。從結果可以推論palladin knockdown 可能會影響細胞增生的速率或造成細胞死亡。接著利用MTT assay 以及BrdU incorporation assay 的實驗分析發現,palladin knockdown 的C2C12 細胞會造成細胞存活率與細胞增生速率下降。而細胞凋亡實驗 (Caspase 3/7 assay) 結果也顯示palladin knockdown 的C2C12 細胞之細胞凋亡情形有顯著的增加。利用即時定量聚合酶連鎖反應(real-time PCR)分析基因表現,結果發現轉染入anti-pan-palladin siRNA#1 至細胞確實能抑制各種palladin isoforms 的表現。此外,將palladin knockdown 的C2C12 細胞誘導進行分化後,可看到myogenin 的表現量有下降的情形,而細胞增生的marker : Ki67,則有顯著的增加。從以上結果推論: 將C2C12 肌原細胞的palladin knockdown 會造成細胞增生速率的降低並增加細胞凋亡程度進而影響肌原細胞的分化。
Palladin, a cytoskeleton-associated protein, plays an important role in regulating cell adhesion and the formation of stress fibers. Palladin has three major isoforms: 200kDa, 140kDa, 90~92 kDa, and the expression of different isoforms has a tissue specific feature,suggesting that different palladin isoforms may be specialized for different functions.Palladin is important in embryonic development, palladin knockout mice caused embryonic lethal, but its role in skeletal muscle development is still unclear. In my dissertation, I tried to futher analyze the role of palladin in myoblast differentiation by using small interfering RNA (siRNA) to knockdown all palladin isoforms in C2C12 myoblasts. The transfection of palladin siRNAs successfully decreased the palladin expression in the C2C12 cells. I also found knockdown of palladin decreased cell density and delayed the formation of myotubes during myoblast differentiation. The result indicated that knockdown of palladin may induce cell death or decrease cell proliferation. The MTT assay and the BrdU incorporation assay results showed that cell proliferation rate was decreased by knockdown of palladin in C2C12. The down- regulation of palladin also induced cell apoptosis by measuring caspase3/7 activity in C2C12 cells. The real-time PCR results showed that all palladin isoforms were down-regulated after transfecting with anti-pan-palladin siRNA#1. The down-regulation of myogenin in palladin knockdown C2C12 cells indicated the myoblast differentiation was affected. The expression of the proliferation marker, Ki67, was increased in palladin-knockdown C2C12 cells after inducing to differentiate. In conclusion, this study demonstrated that knockdown of all palladin isoforms in C2C12 myoblast cells can increase the apoptosis and decrease cell proliferation rate.
Amos, L.A., and Schlieper, D. (2005). Microtubules and maps. Advances in Protein Chemistry 71, 257-298.
Ayscough, K.R. (1998). In vivo functions of actin-binding proteins. Current Opinion in Cell Biology 10, 102-111.
Bang, M.-L., Centner, T., Fornoff, F., Geach, A.J., Gotthardt, M., McNabb, M., Witt, C.C., Labeit, D., Gregorio, C.C., Granzier, H., et al. (2001). The complete gene sequence of titin, expression of an unusual≈ 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circulation Research 89, 1065-1072.
Bernas, T., and Dobrucki, a.J. (2002). Mitochondrial and Nonmitochondrial Reduction of MTT: Interaction of MTT With TMRE, JC-1, and NAO Mitochondrial Fluorescent Probes. Cytometry 47, 236-242.
Boukhelifa, M., Parast, M.M., Bear, J.E., Gertler, F.B., and Otey, C.A. (2004). Palladin is a novel binding partner for Ena/VASP family members. Cell Motility and the Cytoskeleton 58, 17-29.
Boukhelifa, M., Parast, M.M., Valtschanoff, J.G., LaMantia, A.S., Meeke, R.B., and Otey, C.A. (2001). A role for the cytoskeleton-associated protein palladin in neurite outgrowth. Molecular Biology of the Cell 12, 2721-2729.
C. G. Dos Remedios, D. Chhabra, M. Kekic, I. V. Dedova, M. Tsubakihara, D. A. Berry, a., and Nosworthy, N.J. (2003). Actin Binding Proteins: Regulation of Cytoskeletal Microfilaments. Physiological Reviews 83, 433-473.
Chin, Y.R., and Toker, A. (2010). The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Molecular Cell 38, 333-344.
Dixon, R.D.S., Arneman, D.K., Rachlin, A.S., Sundaresan, N.R., Costello, M.J., Campbell, S.L., and Otey, C.A. (2008). Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin. The Journal of Biological Chemistry 283, 6222-6231.
Egelman, E., and Orlova, A. (2001). Two conformations of G-actin related to two conformations of F-actin. Results & Problems in Cell Differentiation 32, 95-101.
Endlich, N., Schordan, E., Cohen, C.D., Kretzler, M., Lewko, B., Welsch, T., Kriz, W., Otey, C.A., and Endlich, K. (2009). Palladin is a dynamic actin-associated protein in podocytesRole of palladin in actin dynamics. Kidney International 75, 214-226.
Goicoechea, S., Arneman, D., Disanza, A., Garcia-Mata, R., Scita, G., and Otey, C.A. (2006). Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. Journal of cell science 119, 3316-3324.
Goicoechea, S.M., Arneman, D., and Otey, C.A. (2008). The role of palladin in actin organization and cell motility. European Journal of Cell Biology 87, 517-525.
Goicoechea, S.M., Bednarski, B., Stack, C., Cowan, D.W., Volmar, K., Thorne, L., Cukierman, E., Rustgi, A.K., Brentnall, T., Hwang, R.F., et al. (2010). Isoform-specific upregulation of palladin in human and murine pancreas tumors. PLoS ONE 5(4): e10347 5, e10347.
Haupenthal, J., Baehr, C., Kiermayer, S., Zeuzem, S., and Piiper, A. (2006). Inhibition of RNAse A family enzymes prevents degradation and loss of silencing activity of siRNAs in serum. Biochemical Pharmacology 75, 702-710.
Hayashi, Y.K., Chou, F.-L., Engvall, E., Ogawa, M., Matsuda, C., Hirabayashi, S., Yokochi, K., Ziober, B.L., Kramer, R.H., Kaufman, S.J., et al. (1998). Mutations in the integrin alpha7 gene cause congenital myopathy. Nature Genetics 19, 97-97.
Herrmann, H., Hesse, M., Reichenzeller, M., Aebi, U., and Magin, T.M. (2003). Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. International Review of Cytology 223, 83-175.
Herrmann, H., Strelkov, S.V., Burkhard, P., and Aebi, U. (2009). Intermediate filaments: primary determinants of cell architecture and plasticity. The Journal of Clinical Investigation 199, 1772-1783.
Hoerter, J.A.H., and Walter, N.G. (2007). Chemical modification resolves the asymmetry of siRNA strand degradation in human blood serum. RNA 13, 1887-1893.
Hotulainen, P., and Lappalainen, P. (2006). Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. The Journal of Cell Biology 173, 383-394.
Jin, L., Gan, Q., Zieba, B.J., Goicoechea, S.M., Owens, G.K., Otey, C.A., and Somlyo, A.V. (2010). The actin associated protein palladin is important for the early smooth muscle cell differentiation. PLoS One 22(9), e12823.
Jin, L., Hastings, N.E., Blackman, B.R., and Somlyo, A.V. (2009). Mechanical properties of the extracellular matrix alter expression of smooth muscle protein LPP and its partner palladin; relationship to early atherosclerosis and vascular injury. Journal of Muscle Research and Cell Motility 30, 41-55.
Joshi, H.C., Palacios, M.J., McNamara, L., and Cleveland, D.W. (1992). γ-Tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 359, 80-83.
Khaitlina, S. (2001). Functional specificity of actin isoforms. Int Rev Cytol 202, 35-98.
Kim, S., and Coulombe, P.A. (2007). Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes & Development 21, 1581-1597.
Krause, M., Dent, E.W., Bear, J.E., Loureiro, J.J., and Gertler, F.B. (2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annual Review of Cell and Developmental Biology 19, 541-564.
Lalowski, M., Salmikangas, P., Suila, H., and Carpén, O. (2001). Characterization of human palladin, a microfilament-associated protein. Molecular Biology of the Cell 12, 3060-3073.
Lai, C.-F., Bai, S., Uthgenannt, B.A., Halstead, L.R., McLoughlin, P., Schafer, B.W., Chu, P.-H., Chen, J., Otey,
C.A., Cao, X., et al. (2006). Four and Half Lim Protein 2 (FHL2) Stimulates Osteoblast Differentiation. Journal of Bone and Mineral Research 21, 17-28.
Lavedana, C., Buchholtza, S., Nussbaumb, R.L., Albinc, R.L., and Polymeropoulos, M.H. (2002). A mutation in the human neurofilament M gene in Parkinson's disease that suggests a role for the cytoskeleton in neuronal degeneration. Neuroscience Letters 322, 57-61.
Liu, X.-S., Luo, H.-J., Yang, H., Wang, L., Kong, H., Jin, Y.-E., Wang, F., Gu, M.-M., Chen, Z., Lu, Z.-Y., et al. (2007). Palladin regulates cell and extracellular matrix interaction through maintaining normal actin cytoskeleton architecture and stabilizing Beta1-integrin. Journal of Cellular Biochemistry 100, 1288-1300.
Liu, J., Burkin, D.J., and Kaufman, S.J. (2008). Increasing α7β1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression. American Journal of Physiology - Cell Physiology 294, C627-640.
Liu, X.-S., Luo, H.-J., Yang, H., Wang, L., Kong, H., Jin, Y.-E., Wang, F., Gu, M.-M., Chen, Z., Lu, Z.-Y., et al. (2007). Palladin regulates cell and extracellular matrix interaction through maintaining normal actin cytoskeleton architecture and stabilizing Beta1-integrin. Journal of Cellular Biochemistry 100, 1288-1300.
Luo, H., Liu, X., Wang, F., Huang, Q., Shen, S., Wangb, L., Xu, G., Sun, X., Kong, H., Gu, M., et al. (2005). Disruption of palladin results in neural tube closure defects in mice. Molecular and Cellular Neuroscience 29, 507-515.
Luo, H., Liu, X., Wang, F., Huang, Q., Shen, S., Wangb, L., Xu, G., Sun, X., Kong, H., Gu, M., et al. (2005). Disruption of palladin results in neural tube closure defects in mice. Molecular and Cellular Neuroscience 29, 507-515.
Ma, K., and Wang, K. (2002). Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. FEBS Letters 532, 273-278.
Molognia, L., Mozaa, M., Lalowskia, M.M., and Carpénb, O. (2005). Characterization of mouse myotilin and its promoter. Biochemical and Biophysical Research Communications 329, 1001-1009.
Otey, C.A., Rachlin, A., Moza†, M., Arneman, D., and Carpen, O. (2005). The palladin/myotilin/myopalladin family of actin-associated scaffolds. International Review of Cytology 246, 31-58.
Parast, M.M., and Otey, C.A. (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. The Journal of cell biology 150, 643-656.
Pogue-Geile, K.L., Chen, R., Bronner, M.P., Crnogorac-Jurcevic, T., Moyes, K.W., Dowen, S., Otey, C.A., Crispin, D.A., George, R.D., Whitcomb, D.C., et al. (2006). Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS medicine 3, e516.
Rönty, M.J., Leivonen, S.-K., Hinz, B., Rachlin, A., Otey, C.A., Kähäri, V.-M., and Carpén, O.M. (2006). Isoform-specific regulation of the actin-organizing protein palladin during TGF-β1-induced myofibroblast differentiation. Journal of Investigative Dermatology 126, 2387-2396.
Rachlin, A.S., and Otey, C.A. (2006). Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. Journal of cell science 119.
Salmikangas, P., Mykkänen, O.-M., Grönholm, M., Heiska, L., Kere, J., and Carpén, O. (1999). Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Human Molecular Genetics 8, 1329-1336.
Salmikangas, P., Ven, P.F.M.v.d., Lalowski, M., Taivainen, A., Zhao, F., Suila, H., Schröder, R., Lappalainen, P., Fürst, D.O., and Carpén, O. (2003). Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Human Molecular Genetics 12, 189-203.
Sbrana, F., Sassoli, C., Meacci, E., Nosi, D., Squecco, R., Paternostro, F., Tiribilli, B., Zecchi-Orlandini, S., Francini, F., and Formigli, L. (2008). Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. American Journal of Physiology - Cell Physiology 295, C160-C172.
Sheetz, M.P. (2001). Cell control by membrane–cytoskeleton adhesion. Nature Reviews Molecular Cell Biology 2, 392-396.
Slater, E., Amrillaeva, V., Fendrich, V., Bartsch, D., Earl, J., Vitone, L.J., Neoptolemos, J.P., and Greenhalf, W. (2007). Palladin mutation causes familial pancreatic cancer: absence in European families. PLoS Medicine 4, e164.
Parast, M.M., and Otey, C.A. (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. The Journal of cell biology 150, 643-656.
Rachlin, A.S., and Otey, C.A. (2006). Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. Journal of cell science 119.
Taverna, D., Disatnik, M.-H., Rayburn, H., Bronson, R.T., Yang, J., Rando, T.A., and Hynes, R.O. (1998). Dystrophic muscle in mice chimeric for expression of α5 Integrin. The Journal of Cell Biology 143, 849-859.
Tay, P.N., Tan, P., Lan, Y., Leung, C.H.-W., Laban, M., Tan, T.C., Ni, H., Manikandan, J., Rashid, S.B.A., Yan, B., et al. (2010). Palladin, an actin-associated protein, is required for adherens junction formation and intercellular adhesion in HCT116 colorectal cancer cells. International journal of oncology 37, 909-926.
Tsutsumi, T., Arima, H., Hirayama, F., and Uekama, K. (2007). Potential use of dendrimer/α-cyclodextrin conjugate as a novel carrier for small interfering RNA (siRNA). Journal of Controlled Release 119, 349-359.
Wang, H.-V., and Moser, M. (2008). Comparative expression analysis of the murine palladin isoforms. Developmental Dynamics 237, 3342-3351.
Zhang, J., Herrera, A.M., Peter D. Paré, and Seow, C.Y. (2010). Dense-body aggregates as plastic structures supporting tension in smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology 229, L631-L638.