| 研究生: |
林俊民 Lin, Chun-Min |
|---|---|
| 論文名稱: |
新型有機共軛酸鹼型潛含性觸媒在環氧樹脂中應用之研究 New Investigation of Organic Lewis Acid-Base Hybrids as Thermal Latent Catalysts for Epoxy-Phenolic Resins |
| 指導教授: |
葉茂榮
Yeh, Mou-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 聚合反應 、有機共軛酸鹼 、環氧樹脂 、潛含性觸媒 |
| 外文關鍵詞: | Organic Lewis acid-base hybrids, thermosets, thermal latent catalysts, epoxy–phenolic resins, polymerization |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本實驗主要在研究開發一系列有機共軛酸鹼系統的潛含性觸媒 (5–9),利用分子銜接有機酸官能基而有效地改變觸媒於環氧樹脂中的潛含性效果,並與市售觸媒2E4MZ (1) 和市售潛含性觸媒2E4MZ-CN (2) 及鹼性觸媒 histamine (3) 和酸性觸媒 3-phenylpropanoic acid (4) 比較各觸媒於環氧樹脂中的儲存性質、聚合反應性及物理機械性質。由反應活化能及黏度測試結果,觸媒的潛含性質趨勢依序為4 > 5 > 8 > 9 > 6 > 7 > 2 > 1 > 3。
由實驗證明,所研發的有機共軛酸鹼型潛含性觸媒5–9於環氧樹脂中的潛含性質均比市售觸媒 2E4MZ (1) 及市售潛含性觸媒 2E4MZ-CN (2) 及鹼性觸媒 histamine (3) 較好。且有機共軛酸鹼型潛含性觸媒6–9在高溫進行聚合反應時,也可有效地展現其反應性,並得到良好的聚合效果和物理性質。與環氧樹脂硬化之玻璃轉移溫度 (Tg) 介於152–163 °C之間,與市售觸媒及市售潛含性觸媒(151–152 °C)相似甚至於更好。
Abstract
Novel organic Lewis acid-base hybrids were evaluated as thermal latent catalysts. Polymerization of diglycidyl ether of bisphenol A (DGEBA) with organic Lewis acid-base hybrids (5–9), two commercial available catalysts (2-ethyl-4-methylimidazole 1 and 1-cyanoethyl-2-ethyl-4-methylimidazole 2), histamine (Histamine, 3) and 3-phenylpropanoic acid (4) were investigated as model reactions of epoxy resin systems with respect to the thermal latency and storage stability of the catalysts. The catalytic activity of organic Lewis acid-base hybrid catalysts 5–9 depended on the acid of hybrids and the nucleophilic effect of amine or imidazole moiety. To characterize the cure activation energy and the viscosity-storage time, the order of thermally latent activity is 3-phenylpropanoic acid (4) > 2-amino-3-phenylpropinoic acid (H-Phe-OH, 5) > 2-amino-3-(imidazole-4-yl)-propionic acid (H-His-OH, 8) > N–tert-butoxycarbonyl-histidine (Boc-His-OH, 9) > imidazole-4-acrylic acid (Urocanic acid, 6) > 3-(imidazole-4-yl)propionic acid (7) > 1-cyanoethyl-2-ethyl-4-methyl-imidazole (2) > 2-ethyl-4-methylimidazole (1) > histamine (3). In comparison with two commercially available catalysts (2-ethyl-4-methylimidazole 1 and 1-cyanoethyl-2-ethyl-4-methyl-imidazole 2), a base catalyst (histamine, 3) and an acid catalyst (3-phenylpropanoic acid, 4) as the standard compounds, the organic Lewis acid-base hybrid catalysts (5–9) revealed better thermal latency. In DGEBA/organic Lewis acid-base hybrid catalysts (6–9) curing systems, the glass transition temperature (Tg) indicate that complete or near complete curing systems were obtained in the range of about 152–163 °C and the results were similar to two commercially available catalysts (151–152 °C, 1–2) and histamine (159 °C, 3). Otherwise, compounds 4–5 did not detectable from 30–300 °C temperature scans because of the weak nucleophilicity and the low crosslinking reactivity.
參考文獻
1.Buchanan, R. C. In Ceramic materials for electronics; M. Dekker: New York, 1986.
2.Harper, C. A. In Electronic packaging and interconnection handbook, McGraw-Hill: New York, 1997.
3.Ginsberg, G. In Electronic equipment packaging technology; Van Nostrand Reinhold: New York, 1992.
4.Goosey, M. T. In Plastics for electronics; Kluwer Academic Publishers: Dordrecht, 1999.
5.Godovsky, Y. K. In Speciality polymers/polymer physics; Springer Verlag: Berlin, 1989.
6.Wong, C. P. In Polymers for electronic and photonic applications, Academic Press: Boston, 1993.
7.Kimura, H.; Matsumoto, A.; Hasegawa, K.; Ohtsuka, K.; Fukuda, A. J. Appl. Polym. Sci. 1998, 68, 1903.
8.Kim, Y. C.; Park, S. J.; Lee, J. R. Polym. J. 1997, 29, 759.
9.Park, S. J.; Kang, J. G.; Kwon, S. H. Macromol. Mater. Eng. 2004, 289, 413.
10.Lee, J. K.; Choi, Y. Macromolecular Reserch. 2002, 10, 34.
11.Park, S. J.; Kim, T. J.; Lee, J. K. J. Appl. Polym. Sci. B: Polym. Phys. 2000, 38, 2114.
12.Hale, A.; Macosko, C.W.; Bair, H. E. J. Appl. Polym. Sci. 1989, 38, 1253.
13.Farkas, A.; Strohm, P.F. J. Appl. Polym. Sci. 1968, 12, 159.
14.Wang, S.; Wong, C. P. 1999 International Symposium on Advanced Packagig Materials. 1999, 67.
15.Galego, N.; González, F.; Vazquez, A. Polymer International. 1996, 40, 213.
16.Scola, D. A., in Developments in Reinforced Plastics, Vol. 4, ed. G. Pritchard. Elsevier Applied Science, London, 1984, pp 165.
17.Barton, J. M.; Harnerton, I.; Howlin, B. J.; Jones, J. R.; Liu, S. Polymer 1998, 39, 1929.
18.Altman, J.; Shoef, M.; Wilchek, M.; Warshawsky, A. J. Chem. Soc., Perkin Trans. 1. 1984, 59.
19.Kimoto, H.; Cohen, L. A. J. Org. Chem. 1980, 45, 3831.
20.Barton, J. M.; Shepherd, P. M. Makromol. Chem. 1975, 176, 919.
21.Heise, M. S.; Martin, G. C. J. Appl. Polym. Sci. 1990, 39, 721.
22.Ooi, S. K.; Cook, W. D.; Simon, G. P.; Such, C. H. Polymer 2000, 41, 3639.
23.Barton, J. M.; Buist, G. J.; Hamerton, I.; Howlin, B. J.; Jones, J. R.; Liu, S. J. Mater. Chem. 1994, 4, 379.
24.Buist, G. J.; Hamerton, I.; Howlin, B. J.; Jones, J. R.; Liu, S.; Barton, J. M. J. Mater. Chem. 1994, 4, 1793.
25.Smith, J. D. B. J. Appl. Polym. Sci. 1981, 26, 979.
26.Kwak, G. H.; Park, S. J.; Lee, J. R. J. Appl. Polym. Sci. 2001, 81, 646.
27.Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym. Sci. A: Polym. Chem. 2001, 39, 187.
28.Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
29.Tung. C. M.; Dynes, P. J. J. Appl. Polym. Sci. 1982, 27, 569.
30.Ricciardi, F.; Romanchick, W. A.; Joullié, M. M. J. Polym. Sci. Polym. Lett. Edition. 1983, 21, 633.
31.Heise, M. S.; Martin, G. C. Macromolecules 1989, 22, 99.
32.Núñez, L.; Núñez, M. R.; Villanueva, M.; Castro, A.; Rial, B. J. Appl. Polym. Sci. 2002, 85, 366.
33.Galego, N.; González, F. Polymer. Int. 1996, 40, 213.
34.Wu, S.; Jorgensen, J. D.; Skaja, A. D.; Williams, J. P.; Soucek, M. D. Prog. Org. Coat. 1999, 36, 21.
35.Park, S. J.; Kim, H. C.; Lee, H. I.; Suh, D. H. Macromolecules 2001, 34, 7573.