| 研究生: |
劉智偉 Liu, Chih-Wei |
|---|---|
| 論文名稱: |
創傷弧菌之藍色螢光蛋白應用於革蘭氏陰性菌生物取像系統之研究 The Study of Vibrio vulnificus Blue Fluorescent Protein Applications for Gram Negative Bacteria Bioimaging System |
| 指導教授: |
鄭智元
Cheng, Chih-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 巨大原生質體 、螢光顯微鏡 、創傷弧菌 、藍色螢光蛋白 、生物取像系統 |
| 外文關鍵詞: | blue fluorescent protein, BFP, Vibrio vulnificus, bioimaging system, fluorescent microscope, giant protoplast |
| 相關次數: | 點閱:210 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討創傷弧菌藍色螢光蛋白基因之野生型(bfp)與突變型(bfp-D7)在大腸桿菌Escherichia coli XL1-Blue與創傷弧菌Vibrio vulnificus CKM-1巨大原生質體表現之差異性,並確立以螢光顯微鏡及數位照相定量菌體內創傷弧菌藍色螢光蛋白螢光強度之方法。實驗發現bfp與bfp-D7螢光基因皆可在大腸桿菌與創傷弧菌巨大原生質體表現,代表巨大原生質體具有細胞功能性,且bfp-D7螢光基因表現的螢光蛋白之螢光較bfp螢光基因產生者來得強。比較大腸桿菌原生質體與創傷弧菌原生質體,發現創傷弧菌原生質體的形成速度與死亡破裂速度均比大腸桿菌原生質體快,同時螢光基因表現程度亦較大腸桿菌高。創傷弧菌原生質體若培養溫度由30°C降至25°C明顯可延緩創傷弧菌原生質體凋亡時間,但亦會降低原生質體細胞生理活性。本研究建立之數位影像系統可數值化螢光蛋白之螢光強度,具有快速、直接、簡便的優點。比較巨大原生質體及正常菌體之螢光強度,發現巨大原生質體螢光強度高於正常菌體且螢光維持時間較正常菌體長。此意味著基因重組菌在原生質體化及巨大化過程中質體不但沒有脫落,且產物之螢光蛋白濃度亦高於正常菌體。利用此結果,本研究之革蘭氏陰性菌巨大原生質體之生物取像系統具有作為研究細胞微結構與生理反應工具的發展潛力。
The expression of the wild type (bfp) and mutation gene (bfp-D7) of blue fluorescent protein (BFP) isolated from Vibrio vulnificus CKM-1 in the giant protoplasts of Escherichia coli XL1B and V. vulnificus CKM-1 were investigated, respectively. In addition, the method for quantifying of the fluorescent intensity of BFP by fluorescent microscopy as well as digital camera was illustrated. The results first showed that both the protoplasts of E. coli and V. vulnificus were able to express bfp as well as bfp-D7, indicating that giant protoplasts possess cell functionality. The fluorescent intensity of the fluorescent protein expressed by bfp-D7 gene was stronger than that expressed by bfp gene. The growth and death rates of V. vulnificus protoplasts were higher than that of E. coli ones. As compared with E. coli, the expression level of BFP in V. vulnificus protoplasts was higher. The death rate of V. vulnificus protoplasts could be slow down at the expense of cellular activity when decreasing the incubation temperature from 30 to 25°C. The digital imaging method with the advantages of rapidity, directness, and easiness established in the work could digitalize the intensity of fluoresce emitted by BFP. The fluorescence produced by giant protoplasts is not only stronger but also longer than that emitted by normal cells. The result suggested that the plasmids were stable when the recombinant microbial cells becoming the giant protoplasts. Additionally, the yield of fluorescent protein produced by giant protoplasts was higher than normal cells. In conclusion, the bioimaging system of the giant protoplast of Gram-negative strains is promising to be a tool for studying the protein expression and cellular activity.
1.Baumann, P., L. Baumann, M. J. Woolkalis, and S. S. Bang, “Evolution relationship in Vibrio and Photobacterium: a basis for a natural classification,” Annu. Rev. Microbial., 37: 369-398 (1983).
2.Birdsell, D. C., and E. H. Cota-Robles, “Production and Ultrastructure of Lysozyme and Ethylenediaminetetraacetate-Lysozyme Spheroplasts of Escherichia coli,” J. Bacteriol., 93: 427-437 (1967).
3.Campbell, A.K., “Living light: biochemistry, function and biomedical application,” Essays Biochem., 24: 41-81 (1989).
4.Chang, C. C., Y. C. Chuang, Y. C. Chen, and M. C. Chang, “Bright fluorescent of a novel protein from Vibrio vulnificus depends on NADPH and the expression of this protein is regulated by a LysR-type regulatory gene,” Biochem. Biophys. Res. Commun., 319: 207-213 (2004).
5.Chang, C. C., Y. C. Yin, and M. C. Chang, “Fluorescent intensity of a novel NADPH-binding protein of Vibrio vulnificus can be improved by directed evolution,” Biochem. Biophys. Res. Commun., 322: 303-309 (2004).
6.Epstein, W., and S. G. Schultz, “Cation Transport in Escherichia coli V. Regulation of cation content”, J. Gen. Physiol., 49: 221-234 (1965).
7.Furtado, Agnelo, and Robert Henry, “Measurement of green fluorescent protein concentration in single cells by image analysis,” Anal. Biochem., 310: 84-92 (2002).
8.Hastings, J. W., C. J. Potrikus, S. C. Gupta, M. Kurfurst, and J. C. Makemson, “Biochemistry and physiology of bioluminescent bacteria,” Adv. microb. physiol., 26: 235-291 (1985).
9.Hsu, R. Y., and H. A. Lardy, “Cleland WW. Pigeon liver malic enzyme. V. Kinetic studies,” J. Biol. Chem., 242: 5315-5322 (1967).
10.Jornvall, H., B. Persson, M. Krook, S. Atrian, R. Gonzalez-Duarte, J. Jeffery, and D. Ghosh, “Short-chain dehydrogenases/reductases(SDR),” Biochemistry, 34: 6003-6013 (1995).
11.Kahana, J., and P. Silver, “Current protocols in molecular biology,” In Ausabel, F.(ed). Green and Wiley, N.Y. (1996).
12.Kuroda, T., N. Okuda, N. Saitoh, T. Hiyama, Y. Terasaki, H. Anazawa, A. Hirata, T. Mogi, I. Kusaka, T. Tsuchiya, I. Yabe, “Patch Clamp Studies on Ion Pumps of the Cytoplasmic Membrane of Escherichia coli,” J. Biol. Chem., 273: 16897-16904 (1998).
13.Kusaka, I., “Growth and Division of Protoplasts of Bacillus megateriumand Inhibition of Division by Pencillin,” J. Bacteriol., 94: 884-887 (1967).
14.Leive, L., “Studies on the Permeability Chang Produced in Coliform Bacteria by Ethylenediaminetetraacetate,” J. Biol. Chem., 243: 2373-2380 (1968).
15.Li, B., and S. X. Lin, “Fluorescence-energy transfer in human estradiol 17 beta-dehydrogenase-NADPH complex and studies on the coenzyme binding,” Eur. J. Biochem., 235: 180-186 (1996).
16.Matz, M. V., A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, and S. A. Lukyanov, “fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol., 17: 969-973 (1999).
17.McDougald D., L. M. Simpson, J. D. Oliver, and M. Hudson, “Transformation of vibrio vulnificus by electroporation,” Curren. Microbiol., 28: 289-291 (1994).
18.Meighen, E. A., “Molecular biology of bacterial bioluminescence,” Microbiol Rev. 55: 123-142 (1991).
19.Meighen, E. A., and I. Bartlet, “Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism,” J. Biol. Chem., 255: 11181-11187 (1980).
20.Morin, J. G., and J. W. Hastings, ”Energy transfer in a bioluminescent system,” J. Cell Physiol., 77: 313-318 (1979).
21.Morise, H., O. Shimomura, F. H. Johnson, and J. Winant, “Intermolecular energy transfer in the bioluminescent system ,” Aequorea. Biochemistry., 13: 2656-2662 (1974).
22.Paparella, M., E. Kolssov, B.K. Fleischmenn, J. Hescheler, and S.Bremer, “The use of quantitative image analysis in the assessment of in vitro embryotoxicity endopoints based on a novel embryonic stem cell clone with endoderm-related GFP expression,” Toxicol. Vitro, 16: 589-597 (2002).
23.Prakash, Y. S., Fluorescent and Luminescent Probs, 2 nd ed., Academic press, 316-330 (1999).
24.Prescott, Harley, Klein, Microbiology, 5th edition, McGraw Hill, New York, 56-59 (2001).
25.Schmidt, T. M. , K. Kopecky, and K. H. Nealson, “Bioluminescence of the insect pathogen Xenorhabdus luminescens,” Appl. Environ. Microbiol., 55: 2607-2612 (1989).
26.Siegele, D. A., L. Campbell, and J. C. Hu, “Green fluorescent protein as a reporter of transcriptional activity I prokaryotic system,” Methods Enzymol., 305: 499-513 (2000).
27.Su, J.H., Y. C. Chung, Y. C. Tsai, and M. C. Chang, “Cloning and Characterization of a Blue Fluorescent Protein from Vibrio vulnificus,” Biochem. Biophys. Res. Commun., 287: 359-365 (2001).
28.Tacket, C. O., F. Brenner, and P. A. Blake, “Clinical features and an epidemiological study of Vibrio vulnificus infections,” J. Infect. Dis., 149: 558-561 (1984).
29.Yang, F., L.G. Moss, and G. N. Jr. Phillips, “The molecular structure of green fluorescent protein.” Nat. Biotechnol., 14: 1246-1251 (1996).
30.Youvan, D.C. and M. E. Michel-Beyerle, “Structure and fluorescence mechanism of GFP,” Nat. Biotechnol., 14: 1219-1220 (1996).
31.吳孟純, 大腸桿菌巨大原生質體製作及應用之研究, 成功大學化學工程研究所碩士論文, 1-15 (2002).
32.鍾文軒, 創傷弧菌之藍色螢光蛋白應用於大腸桿菌生物取像系統之研究, 成功大學化學工程研究所碩士論文, 1-12 (2004).