| 研究生: |
謝宗成 Sie, Zong-Cheng |
|---|---|
| 論文名稱: |
農廢燃燒對嘉南地區空氣品質影響 Impacts of rice straw open burning on the ambient air quality in Chianan area |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 農業廢棄物燃燒 、PM10 、PM2.5 、CMB 、AERMOD |
| 外文關鍵詞: | Rice straw open burning, PM10, PM2.5, CMB, AERMOD |
| 相關次數: | 點閱:101 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來農業廢棄物燃燒一直是影響台灣空氣品質的重要汙染源之一,其除了會影響能見度以外,農廢燃燒產生的懸浮微粒及氣態汙染物對週遭環境空氣品質的影響也是我們主要探討的部份。環保署自從空氣品質自動監測站啟用之後,由多年來觀測數據資料中得知,台灣雲嘉南地區每年在5~6月及11~12月PSI大於100的事件日發生頻率變高,而這段期間是稻米耕作收成之後燃燒農業廢棄物的主要時期,再加上冬季之高壓氣候造成氣流穩定的氣候因素,污染物更不易被擴散稀釋,造成汙染物的累積。
本研究使用2009年11月~12月在新港、新營連續PM10、PM2.5採樣資料,再利用化學質量平衡受體模式(CMB) 並配合周界實地採樣結果計算汙染源貢獻比例及利用擴散模式(AERMOD)模擬週遭環境汙染物擴散情形,了解農廢燃燒汙染物種類特性及對不同地區空氣品質影響之差異。研究結果發現,在農廢燃燒期間11/28~12/4PM10、PM2.5質量濃度有明顯上升的趨勢,平均濃度分別為78.2、59.0(μg/m3),比燃燒前多了約2.2倍;元素碳、有機碳平均濃度分別為5.38、5.69(μg/m3),比燃燒前多了約1.75倍;水溶性陽離子方面則是NH4+和K+兩個離子增量比例最大,平均濃度分別為4.40、1.04(μg/m3),比燃燒前多了約2.74倍、3.50倍。由這些數據得知在農廢燃燒期間,有大量的K+、EC、OC散佈在周遭環境中。重金屬方面則是以地表揚塵指標物為主。在農廢燃燒實地採樣的結果表示鉀離子、鈣離子、氯離子、鎂離子、元素碳、有機碳為主要的成份,主要來自於農廢燃燒及地表揚塵;重金屬除了鋁、鎂、鈣、鐵外,其他元素並沒有明顯的增量。
本研究以CMB模式解析出9個汙染源,新港及新營地區主要之汙染源貢獻為地表揚塵(40%),其次為衍生性氣膠硫酸銨(30%),而新港地區受農廢燃燒的影響比新營地區大。本研究的AERMOD模擬結果發現9點~11點與15點~17點的濃度比較高,此跟大氣垂直方向對流情形有關,早上跟傍晚的大氣垂直方向對流較弱,而中午至下午此時段的對流較旺盛,使汙染物容易擴散;與空品站監測值比較結果,在AERMOD模擬濃度增量的多寡與空品站質量濃度值有正相關。
Rice straw open burning is always one of important sources of impacting air quality in Taiwan recently. Besides it will impact visibility, and particulate produced by rice straw open burning will impact air quality to our surroundings. We get monitor raw data after air quality automatic monitoring site starts to work, and we know that PSI value larger than 100 happens with increasing frequency in Cha-nan area in spring and winter. It is peak period of rice straw open burning, and high pressure of climate in winter makes it more stable. Therefore, pollutant accumulate because of badly dispersion.
We use PM10、PM2.5 continuous sampling data from 2009/11/14 to 2009/12/23 in Singang and Shinying. We calculate ratio of contribution of pollutant sources by CMB and simulate the result of dispersion by AERMOD. By these results we can realize kinds and characteristic of rice straw open burning pollutant and the difference in air quality impaction between different areas. According to results of experiment, there is an increasing trend in PM10、PM2.5 mass concentration during rice straw open burning period. The average concentration of PM10、PM2.5(78.2、59.0μg/m3) is about 2.2 times higher than them burned before. The average concentration of EC、OC(5.38、5.69μg/m3) is about 1.75 times than them burned before. The average concentration of dissolvable cation NH4+、K+(4.40、1.04μg/m3) are about 2.74、3.50 times than them burned before. There are a large number of K+、EC、OC emitted to surroundings during rice straw open burning, it is the same as results of reference.
There are 9 sources in this result of CMB model. Percentage of primary sources in Singang and Shinying are surface dust(40%)、ammonium sulfate of secondary aerosol(30%), and the influence of rice straw open burning in Singang is more serious in Shinying. We find that the concentration at 9:00 am~11:00 am and 3:00 pm~5:00 pm is higher because of vertical convection in the atmosphere. Vertical convection is stronger in the noon and afternoon, and it makes pollutant diffuse widely. According to result comparing with air quality monitoring site, it shows that positive correlation between increment of concentration of AERMOD model and concentration of air quality monitoring site.
1. Chan Y. C., R. W. Simpson, G. H. Mctainsh, et al., “Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia.”, Atmospheric Environment, V31(N22), pp3773-3785, 1997
2. Chow J. C., J. G. Watson, E. M. Fujita. Z. Lu, et al., “Temporal and spatial variations of PM2.5 and PM10 aerosol in the southern California air quality study”, A. E., V28, N12, pp2061-2088, 1994.
3. Faulkner, W. B., B. W. Shaw, et al. “Sensitivity of Two Dispersion Models (AERMOD and ISCST3) to Input Parameters for a Rural Ground-Level Area Source.” Journal of the Air & Waste Management Association 58(10): 1288-1296, 2007.
4. Kumar, A., S. Dixit, et al. "Evaluation of the AERMOD dispersion model as a function of atmospheric stability for an urban area." Environmental Progress 25(2): 141-151, 2006.
5. Lee, C. T. and W. C. Hsu, “The Source Apportionment of an Urban Aerosol from Chemical Properties of Aerosol Spectra Near Atmospheric Sources,” A & WMA Conference, 58.07, Dencer, Colorado, 1993。
6. Lodge J. P. and J. B. Wedding, “Collocated Andersen and Wedding Samplers -- partial conmvergance” in Transactions, PM10: Implementation of stadard, edited by C.V. Mathia and D. H. Stonefield, TR-13, pp11-12, APAC, Pittsburgh, PA, 1988.
7. Long R.W., N. L. Eatough, N. F. Mangelson, et al., The Measurement of PM2.5, Including Semi-Volatile Components, in the EMPACT Program: Results from the Salt Lake City Study and Implications for Public Awareness, Health Effects, and Control Strategies, Atmos. Environ. 37:4407–4417,2003.
8. Mehlmann A., and P. Warneck, “Atmospheric gaseous HNO3, particulate nitrate, and aerosol size distributions of major ionic species at a rural site in western Germany.”, Atmospheric. Environment, V29, pp2359-2373, 1995.
9. Paine, R. J., R. F. Lee, et al., “MODEL EVALUATION RESULTS FOR AERMOD.” http://www.epa.gov, 1998.
10. Reist R. C., “Aerosol science and technology”, Mcgraw-hill international editions, chemical engineering series, 1993.
11. Robert E, J. R. Lee, and G. Stephen, “Measurement of Suspended Particulate matter in air.”, Envir. Sci. and Techol., V6, N12, pp1019-1024, 1972.
12. Silverman, K. C., J. G. Tell, et al. (2007). "Comparison of the industrial source complex and AERMOD dispersion models: Case study for human health risk assessment." Journal of the Air & Waste Management Association 57(12): 1439-1446.
13. Seinfeld J. H., “Atmospheric chemistry and physics of air pollution”, Wiley-interscience, New York., 1986.
14. Tsuang, B. J. (2003). "Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part I theory." Atmospheric Environment 37(28): 3981-3991.
15. Tsuang, B. J., C. L. Chen, et al. (2003). "Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part II. Case study." Atmospheric Environment 37(28): 3993-4006.
16. Turpin B. J. and J. J. Huntzicker, “Identification of secondary organic carbon episodes
110
and quantitation of primary and secondary organic aerosol concentrations during SCAQS”, Atmospheric Environment, V.29, N23, pp3527-3544, 1995.
17. U.S.E.P.A.,”AERMOD: description of model formulation”, pp.1-89, 2004.
18. U.S.E.P.A., “User’s guide for the AERMOD meteorological preprocessor.”, 2004.
19. U.S.E.P.A., “Development and Evaluation of the PRIME Plume Rise and Building Downwash Model.”, 2000.
20. U.S.E.P.A., “User’s Guide For The AMS/EPA Regulatory Model-AERMOD.”, 2004.
21. U.S.E.P.A., “Addendum to ISC3 User’s Guide : The Prime Plume Rise and Building Downwash Model.”,1997.
22. Zou, B., F. B. Zhan, et al. "Performance of AERMOD at different time scales." Simulation Modelling Practice and Theory 18(5): 612-623, 2010.
23. 曠永銓、許佩蒨,”AERMOD煙流模式在台灣地區之應用研究”,中興工程,Vol.88,pp.55-62,2005。
24. 田浚致,”利用空氣擴散模式模擬石化工業區致癌性汙染物之濃度及推估居民之致癌風險”,國立成功大學環境醫學研究所碩士論文,2004。
25. 劉沁瑋,”新竹科學工業園區空氣汙染物排放總量推估及ISCST3擴散模式應用”,國立交通大學環境工程研究所碩士論文,2002。
26. 蔡瀛逸、黃香儒、翁子翔、簡偉庭,「大氣次微米微粒衍生性二元酸之生成及粒徑分佈變異探討」,行政院國家科學委員會專題研究計畫,2004。
27. 陳昌輝,「台灣中彰雲嘉南稻草露天燃燒事件對高屏地區光化煙霧形成之影響」,碩士論文,國立台灣大學環境工程學研究所,2004。
28. 林志遠,「台灣雲嘉地區農廢露天燃燒事件分析」-空氣品質影響與排放量推估,碩士論文,國立台灣大學環境工程學研究所,2004。
29. 林昆明,「台灣西部地區露天農廢燃燒汙染物之傳輸效應」,碩士論文,國立台灣大學環境工程學研究所,2005。
30. 林志忠、陳瑞仁、陳怡伶、張詵雨、曾勝賢、楊涴淳,「稻草露天燃燒排放粒狀物特性之探討」,中華民國環境工程學會空氣汙染控制技術研討會,2006。
31. 鄭曼婷、蘇怡如、何燕婷、林煜棋,「農廢燃燒與沙塵暴的懸浮微粒特性分析」,中華民國環境工程學會空氣汙染控制技術研討會,2006。
32. 吳旻修,「稻草露天燃燒之排放係數」,中華民國環境工程學會空氣汙染控制技術研討會,2009。
33. 陳穩至,「大氣中懸浮微粒之特性與來源」,碩士論文,國立成功大學環境工程研究所,1999。
34. 王景良,「中部空品區汙染源逸散粉塵的組成分析」,碩士論文,國立中興大學環境工程研究所,1999。
35. 翁國豪,「生質燃燒氣膠長程傳輸與高山雲霧間隙氣膠特性之研究」,碩士論文,國立中央大學環境工程研究所,2007。
36. 魏仕杰,「農廢燃燒對大氣氣膠濃度與組成之影響」,碩士論文,國立成功大學環境工程研究所,2009