簡易檢索 / 詳目顯示

研究生: 向昰賢
Hsiang, Shih-Hsien
論文名稱: 高保留度含咪唑基聚鋰子液體共聚乙二醇擬固態電解質的製備與其在鋰金屬電池之應用
High Retention Quasi-solid-state Electrolyte based on Imidazolium-containing Poly(ionic liquid-co-ethylene glycol) for Lithium-metal Batteries
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 聚離子液體聚乙二醇寡聚物塑化劑擬固態電解質鋰金屬電池
外文關鍵詞: quasi-solid-state electrolytes, poly(ionic liquid)s, oligomer additives, lithium-metal batteries
相關次數: 點閱:106下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要以PEG擬固態電解質作為主體並使用聚離子液體單體(VIm-Et-TFSI)組成與聚離子液體交聯劑(VIm-b-VIm-TFSI)試圖改善PEG擬固態電解質與鋰金屬的反應性以增加電池充放電長效循環穩定性。首先將高分子單體PEGMEMA(Mn=500)、塑化劑(PEGDME)、與鋰鹽(LiTFSI)進行混合,並加入合成之聚離子液體結構,將攪拌均勻的電解質前驅物(Precursor)直接於手套箱內滴至鋰金屬表面並加熱至55oC以進行原位聚合反應(In-situ polymerization),形成與鋰金屬緊密接合之聚離子液體擬固態電解質(Poly(ionic liquid) Quasi-solid-state Electrolytes, PIL-QSEs)。由XRD與DSC分析可以發現各組成之電解質皆不具有結晶相的訊號,說明各電解質組成皆均勻分散且與鋰鹽擁有非常好的相容性;由DMA壓縮測試了解到PEG擬固態電解質薄膜本身具有良好的韌性與延展性,而當產生交聯高分子結構後會造成電解質薄膜變的脆硬;在TGA與LSV測試中可以發現聚離子液體的導入可以有效地增加電解質之熱穩定性與電化學穩定性;最後可以發現20%之聚離子液體導入可以使PEG擬固態電解質擁有最高的導離子度。在電池測試中,PEG擬固態電解質在效能測試上皆有不錯的表現,然而在室溫與60 oC下的長效測試穩定性上卻略有不足,經過實驗後發現僅使用PEG鏈段之擬固態電解質沒有辦法形成穩定且均勻之SEI層,這使得電池的庫倫效率在充放電的過程中不穩定而造成電容的衰退。在導入聚離子液體結構後明顯改善了庫倫效率不足等問題,這有可能是由於聚離子液體結構可減緩塑化劑與鋰金屬間反應所致。進一步導入的交聯高分子結構更使電池的充放電穩定性上升,其在室溫與60 oC以0.2C 充放電下可以維持初始電容值90%超過150圈。使用SEM觀察各組成電解質經過室溫0.2C充放電100圈的鋰金屬電極可以發現PEG擬固態電解質形成較為鬆散且較厚之SEI層,這使得其無法有效阻止鋰金屬與電解質間的反應性,造成電池庫倫效率不穩定。而在導入聚離子液體後可以發現SEI層變得較為緻密,而交聯結構能更進一步抑制鋰支晶(Lithium dendrites)的生成,產生較為均勻、平坦、緻密且厚度小的SEI層,使電池循環穩定性增加。

    In order to manufacture high energy density batteries, lithium metal is considered to be the most suitable candidate to replace graphite anodes. However, uncontrolled growth of lithium dendrites during cycling has remained a potential risk of short circuit and explode for lithium metal batteries. The currently commercial liquid electrolytes can not effectively suppress the formation of lithium dendrites, leading to the shift of research focus to polymer electrolytes to improve the potential safety issues of lithium metal batteries. We report a quasi-solid-state polymer electrolytes comprising poly(ionic liquid-co-ethylene glycol), oligomer additives and lithium salts, which exhibited large operating temperature range and good cycling efficiency. These polymer electrolytes were formed in situ by coating the precursors directly onto the anode materials, followed by thermal polymerization. This approach not only combines the polymerization and membrane formation in a step, but also possibly facilitates the lithium transport by reducing the interface resistance between the electrolytes and electrodes. In this project, we also evinced the advantages of cationic and crosslinked polymer structure in PEG-based electrolytes. The experimental data showed that the polymer electrolyte with optimized weight percentages of imidazolium-containing crosslinking agent and poly(ethylene glycol) monomer exhibited ionic conductivity of 1.52*10-4 S/cm and electrochemical stability window of 5.4V at room temperature. Most importantly, the long-term cyclic performance is significantly improved by adding the imidazolium-based cationic crosslinker, and the discharge retained 90% initial capacity over 150 cycles both at 30 oC and 60 oC. After the cycling tests, the advantages of cationic and crosslinked polymer framework were evidenced by morphology observation of lithium metal anodes. As a consequence, we have successfully created a new type of polymer electrolytes representing a new design principle for quasi-solid-state electrolytes and offering opportunities for further commercialization.

    摘要 I 致謝 XVII 圖目錄 XXI 表目錄 XXIV 第一章 緒論 1 1-1前言 1 1-2電池發展與介紹 2 1-3鋰電池與鋰離子電池 4 1-4研究動機 6 第二章 文獻回顧 8 2-1鋰離子電池基本組成與工作原理 8 2-2正極材料 9 2-2-1過渡金屬氧化物-LiCoO2 10 2-2-2尖晶石狀物-LixMn2O4 11 2-2-3鋰金屬磷酸鹽化合物-LiFePO4 12 2-2-4三元電極材料-NCM 13 2-3負極材料 15 2-3-1碳負極材料 16 2-3-2矽基負極材料 17 2-3-3鋰金屬負極材料 18 2-4電解質 19 2-4-1液態電解質 21 2-4-2膠態電解質 23 2-4-3全固態電解質 25 2-4-4擬固態電解質 27 2-4-5聚離子液體擬固態電解質 30 第三章 實驗 33 3-1實驗藥品與材料 33 3-2儀器設備 34 3-3樣品製備 35 3-3-1 VIm-Et-TFSI單體合成 35 3-3-2 VIm-b-VIm-TFSI交聯劑合成 36 3-4聚離子液體(PIL)擬固態電解質組成 37 3-5 PIL擬固態電解質薄膜製備 38 3-6鋰電池的製備與組裝 40 3-6-1製備LiFePO4正極材料 40 3-6-2鈕扣型電池組裝 41 3-7材料分析與鑑定 42 3-7-1核磁共振光譜儀(NMR) 42 3-7-2傅立葉轉換紅外線光譜儀(FT-IR) 42 3-7-3 X-射線繞射光譜儀(XRD) 43 3-7-4示差掃描量熱儀(DSC) 43 3-7-5熱重分析儀(TGA) 44 3-7-6動態力學分析(DMA) 44 3-7-7掃描式電子顯微鏡(SEM) 45 3-8電化學測試 46 3-8-1線性掃描伏安法(Linear Sweep Voltammetry, LSV) 46 3-8-2離子傳導度(Ionic Conductivity) 46 3-8-3電化學阻抗頻譜法(EIS) 47 3-8-4電池充放電能力測試(C-Rate Test) 48 3-8-5電池循環壽命測試(Cycle Life Test) 49 3-8-6電池交流阻抗測試(AC Impedance Test) 49 3-8-7鋰對稱電池時效穩定分析(Symmetry Li Ageing Test) 49 3-8-8鋰對稱電池循環穩定性分析(Symmetry Li Cycle Stability Test) 50 3-8-9鋰離子遷移數之量測 (Lithium Transference Number) 50 第四章 結果與討論 51 4-1 NMR合成鑑定 51 4-1-1 VIm-Et-TFSI合成鑑定 51 4-1-2 VIm-b-VIm-TFSI合成鑑定 52 4-2傅立葉轉換紅外線光譜分析(FT-IR) 53 4-3 X-ray繞射光譜分析(XRD) 54 4-4示差式掃描熱量分析(DSC) 55 4-5熱重分析(TGA) 57 4-6電化學穩定性測量(LSV) 59 4-7動態力學分析(DMA) 60 4-8 PIL擬固態電解質表面與截面形態學分析(SEM) 63 4-9離子傳導度(Ionic Conductivity) 65 4-10鋰離子遷移數測量(Lithium Transference Number) 67 4-11電池在60oC之充放電效能測試(C-Rate Test) 69 4-12電池在60 oC下0.2C長效測試(Cycle Test) 71 4-13電池在60 oC下0.5C長效測試(Cycle Test) 73 4-14電池在室溫之充放電效能測試(C-Rate Test) 75 4-15電池在室溫之長效測試(Cycle Test) 77 4-16鋰對稱電池時效穩定分析(Symmetry Li Ageing Test) 80 4-17鋰對稱電池極限電流密度分析(Limit current density analysis) 82 4-18鋰對稱電池循環穩定性分析(Symmetry Li Cycle Stability Test) 84 4-19電池交流阻抗測試(AC Impedance Test) 86 4-20電池循環100圈後之鋰金屬表面與截面SEM分析 92 第五章 結論 97 第六章 參考文獻 99

    [1] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific2011, pp. 171-179.
    [2] S. Megahed, B. Scrosati, Lithium-Ion Rechargeable Batteries, J Power Sources 51(1-2) (1994) 79-104.
    [3] T. Placke, R. Kloepsch, S. Dühnen, M.J.J.o.S.S.E. Winter, Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density, 21(7) (2017) 1939-1964.
    [4] O. Toprakci, H.A.K. Toprakci, L.W. Ji, X.W. Zhang, Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries, Kona Powder Part J (28) (2010) 50-73.
    [5] D. Guyomard, J.M. Tarascon, Rocking-Chair or Lithium-Ion Rechargeable Lithium Batteries, Adv Mater 6(5) (1994) 408-412.
    [6] P. Verma, P. Maire, P. Novak, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim Acta 55(22) (2010) 6332-6341.
    [7] D.C. Lin, Y.Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat Nanotechnol 12(3) (2017) 194-206.
    [8] B. Di Pietro, M. Patriarca, B.J.J.o.P.S. Scrosati, On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries, 8(2) (1982) 289-299.
    [9] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Lixcoo2 "(Oless-Thanxless-Than-or-Equal-To1) - a New Cathode Material for Batteries of High-Energy Density, Mater Res Bull 15(6) (1980) 783-789.
    [10] M. Fischer, M. Werber, P.V.J.E.p. Schwartz, Batteries: Higher energy density than gasoline?, 37(7) (2009) 2639-2641.
    [11] W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybutin, Y.H. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries, Energ Environ Sci 7(2) (2014) 513-537.
    [12] M. Dirican, C. Yan, P. Zhu, X.J.M.S. Zhang, E.R. Reports, Composite solid electrolytes for all-solid-state lithium batteries, 136 (2019) 27-46.
    [13] T. Sakakibara, M. Kitamura, T. Honma, H. Kohno, T. Uno, M. Kubo, N. Imanishi, Y. Takeda, T.J.E.A. Itoh, Cross-linked polymer electrolyte and its application to lithium polymer battery, 296 (2019) 1018-1026.
    [14] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X.W. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energ Environ Sci 7(12) (2014) 3857-3886.
    [15] J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park, A review of lithium and non-lithium based solid state batteries, J Power Sources 282 (2015) 299-322.
    [16] G.G. Amatucci, J.M. Tarascon, L.C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries, Solid State Ionics 83(1-2) (1996) 167-173.
    [17] E.J.S.s.i. Antolini, LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties, 170(3-4) (2004) 159-171.
    [18] G.A. Tsirlina, M.D. Levi, O.A. Petrii, D.J.E.a. Aurbach, Comparison of equilibrium electrochemical behavior of PdHx and LixMn2O4 intercalation electrodes in terms of sorption isotherms, 46(26-27) (2001) 4141-4149.
    [19] Y.J. Shin, A. Manthiram, Factors influencing the capacity fade of spinel lithium manganese oxides, J Electrochem Soc 151(2) (2004) A204-A208.
    [20] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J Electrochem Soc 144(4) (1997) 1188-1194.
    [21] A.K. Padhi, K.S. Nanjundaswamy, J.B.J.J.o.t.e.s. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries, 144(4) (1997) 1188-1194.
    [22] L. Zhi-Ping, Z. Yu-Jun, Z.J.C.P.L. Yan-Ming, Li-site and metal-site ion doping in phosphate-olivine LiCoPO4 by first-principles calculation, 26(3) (2009) 038202.
    [23] L.X. Yuan, Z.H. Wang, W.X. Zhang, X.L. Hu, J.T. Chen, Y.H. Huang, J.B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energ Environ Sci 4(2) (2011) 269-284.
    [24] N. Nitta, F. Wu, J.T. Lee, G.J.M.t. Yushin, Li-ion battery materials: present and future, 18(5) (2015) 252-264.
    [25] T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.K. Song, The Current Move of Lithium Ion Batteries Towards the Next Phase, Adv Energy Mater 2(7) (2012) 860-872.
    [26] J. Lu, Z. Chen, F. Pan, Y. Cui, K.J.E.E.R. Amine, High-performance anode materials for rechargeable lithium-ion batteries, 1(1) (2018) 35-53.
    [27] K.J.C.r. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, 104(10) (2004) 4303-4418.
    [28] M. Yoshio, T. Tsumura, N.J.J.o.P.S. Dimov, Electrochemical behaviors of silicon based anode material, 146(1-2) (2005) 10-14.
    [29] K.K. Fu, Y.H. Gong, B.Y. Liu, Y.Z. Zhu, S.M. Xu, Y.G. Yao, W. Luo, C.W. Wang, S.D. Lacey, J.Q. Dai, Y.N. Chen, Y.F. Mo, E. Wachsman, L.B. Hu, Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Sci Adv 3(4) (2017).
    [30] Z. Li, J. Huang, B.Y. Liaw, V. Metzler, J.J.J.o.p.s. Zhang, A review of lithium deposition in lithium-ion and lithium metal secondary batteries, 254 (2014) 168-182.
    [31] C. Brissot, M. Rosso, J.-N. Chazalviel, S.J.J.o.p.s. Lascaud, Dendritic growth mechanisms in lithium/polymer cells, 81 (1999) 925-929.
    [32] M.D. Tikekar, S. Choudhury, Z. Tu, L.A.J.N.E. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries, 1(9) (2016) 1-7.
    [33] M. Burjanadze, Y. Karatas, N. Kaskhedikar, L.M. Kogel, S. Kloss, A.-C. Gentschev, M.M. Hiller, R.A. Müller, R. Stolina, P.J.Z.f.P.C. Vettikuzha, Salt-in-polymer electrolytes for lithium ion batteries based on organo-functionalized polyphosphazenes and polysiloxanes, 224(10-12) (2010) 1439-1473.
    [34] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem Rev 104(10) (2004) 4303-4417.
    [35] K. Xu, Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chem Rev 114(23) (2014) 11503-11618.
    [36] J. Foropoulos, D.D. Desmarteau, Synthesis, Properties, and Reactions of Bis((Trifluoromethyl)Sulfonyl) Imide, (Cf3so2)2nh, Inorg Chem 23(23) (1984) 3720-3723.
    [37] Z.X. Wang, B.Y. Huang, S.M. Wang, R.J. Xue, X.J. Huang, L.Q. Chen, Competition between the plasticizer and polymer on associating with Li+ ions in polyacrylonitrile-based electrolytes, J Electrochem Soc 144(3) (1997) 778-786.
    [38] F. Croce, F. Gerace, G. Dautzemberg, S. Passerini, G.B. Appetecchi, B. Scrosati, Synthesis and Characterization of Highly Conducting Gel Electrolytes, Electrochim Acta 39(14) (1994) 2187-2194.
    [39] H.S. Choe, J. Giaccai, M. Alamgir, K.M. Abraham, Preparation and Characterization of Poly(Vinyl-Sulfone)-Based and Poly(Vinylidene-Fluoride)-Based Electrolytes, Electrochim Acta 40(13-14) (1995) 2289-2293.
    [40] S. Rajendran, R. Kannan, O.J.J.o.p.s. Mahendran, Ionic conductivity studies in poly (methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithium salts, 96(2) (2001) 406-410.
    [41] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of Alkali-Metal Ions with Poly(Ethylene Oxide), Polymer 14(11) (1973) 589-589.
    [42] Z.G. Xue, D. He, X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J Mater Chem A 3(38) (2015) 19218-19253.
    [43] L.Z. Fan, X.L. Wang, F. Long, All-solid-state polymer electrolyte with plastic crystal materials for rechargeable lithium-ion battery, J Power Sources 189(1) (2009) 775-778.
    [44] P.J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors, Nat Mater 3(7) (2004) 476-481.
    [45] R.X. He, F. Peng, W.E. Dunn, T. Kyu, Chemical and electrochemical stability enhancement of lithium bis (oxalato)borate (LiBOB)-modified solid polymer electrolyte membrane in lithium ion half-cells, Electrochim Acta 246 (2017) 123-134.
    [46] A. Arya, A.L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study, Ionics 23(3) (2017) 497-540.
    [47] Y.-S. Ye, J. Rick, B.-J.J.J.o.M.C.A. Hwang, Ionic liquid polymer electrolytes, 1(8) (2013) 2719-2743.
    [48] K. Kim, Y.H. Cho, H.C. Shin, 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries, J Power Sources 225 (2013) 113-118.
    [49] L. Porcarelli, C. Gerbaldi, F. Bella, J.R. Nair, Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries, Sci Rep-Uk 6 (2016).
    [50] S. Choudhury, Z.Y. Tu, A. Nijamudheen, M.J. Zachman, S. Stalin, Y. Deng, Q. Zhao, D. Vu, L.F. Kourkoutis, J.L. Mendoza-Cortes, L.A. Archer, Stabilizing polymer electrolytes in high-voltage lithium batteries, Nat Commun 10 (2019).
    [51] J.H. Cha, P.N. Didwal, J.M. Kim, D.R. Chang, C.-J.J.J.o.M.S. Park, Poly (ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly (ethylene glycol) dimethyl ether, 595 (2020) 117538.
    [52] M.E. Taylor, M.J.J.T.J.o.P.C.B. Panzer, Fully-Zwitterionic Polymer-Supported Ionogel Electrolytes Featuring a Hydrophobic Ionic Liquid, 122(35) (2018) 8469-8476.
    [53] A.S. Shaplov, R. Marcilla, D.J.E.A. Mecerreyes, Recent advances in innovative polymer electrolytes based on poly (ionic liquid) s, 175 (2015) 18-34.
    [54] B. Yu, F. Zhou, C. Wang, W.J.E.p.j. Liu, A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide, 43(6) (2007) 2699-2707.
    [55] L. Porcarelli, A.S. Shaplov, M. Salsamendi, J.R. Nair, Y.S. Vygodskii, D. Mecerreyes, C.J.A.a.m. Gerbaldi, interfaces, Single-ion block copoly (ionic liquid) s as electrolytes for all-solid state lithium batteries, 8(16) (2016) 10350-10359.
    [56] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P. Bonnet, T.N. Phan, D. Bertin, D. Gigmes, D.J.N.m. Devaux, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries, 12(5) (2013) 452-457.
    [57] Y. Zhou, Y. Yang, N. Zhou, R. Li, Y. Zhou, W.J.E.A. Yan, Four-armed branching and thermally integrated imidazolium-based polymerized ionic liquid as an all-solid-state polymer electrolyte for lithium metal battery, 324 (2019) 134827.
    [58] T. Huang, M.-C. Long, X.-L. Wang, G. Wu, Y.-Z.J.C.E.J. Wang, One-step preparation of poly (ionic liquid)-based flexible electrolytes by in-situ polymerization for dendrite-free lithium ion batteries, 375 (2019) 122062.
    [59] F.R. Ma, Z.Q. Zhang, W.C. Yan, X.D. Ma, D.Y. Sun, Y.C. Jin, X.C. Chen, K. He, Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All-Solid-State Lithium-Ion Batteries, Acs Sustain Chem Eng 7(5) (2019) 4675-4683.
    [60] Y. Lu, S.K. Das, S.S. Moganty, L.A.J.A.M. Archer, Ionic Liquid‐Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium‐Metal Batteries, 24(32) (2012) 4430-4435.
    [61] S. Choudhury, Z. Tu, A. Nijamudheen, M.J. Zachman, S. Stalin, Y. Deng, Q. Zhao, D. Vu, L.F. Kourkoutis, J.L.J.N.c. Mendoza-Cortes, Stabilizing polymer electrolytes in high-voltage lithium batteries, 10(1) (2019) 1-11.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE