| 研究生: |
顏郁慈 Yen, Yu-Tzu |
|---|---|
| 論文名稱: |
探討多元⼤數據下的都市空間結構 - 以臺北市為例 Exploring the Urban Spatial Structure Based on Multivariate Big Data:A Case Study of Taipei City |
| 指導教授: |
鄭皓騰
Cheng, Hao-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 都市空間結構 、大數據 、信令資料 、IC卡數據 、生活圈 、都市功能分類 |
| 外文關鍵詞: | Urban spatial structure, Big data, Living circle, Urban function classification |
| 相關次數: | 點閱:208 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
都市空間結構可以被視為活動、人類和都市資源的綜合相互作用,其功能分派及資源分布產生內部的旅次需求,而藉由對人口流動、活動強度的分析,即可產生由下而上描繪居民日常的空間結構。由居民感知角度的微觀層面來掌握具有共同特徵的生活單元,透過多元大數據從時空維度揭示都市內的個體如何利用都市空間,將可加深對人群移動模式與都市空間結構間耦合關係的理解。近年來國外研究雖已建構其研究方法框架進行都市空間結構之解析,惟研究架構鮮少綜合多種大數據進行探討,而國內研究更仍處於初步階段。
本研究以臺北市為實證地區,提出一種結合不同大數據特性下的分析架構,以識別具多核心發展特性之都市空間結構。首先,透過Infomap網絡分析分析下透過公車刷卡資料探索在空間交互作用下的都市空間區劃,將具有緊密聯繫關係的地區視為一生活圈。再者,結合信令資料探索活動人口的強度變化,提取其時序性特徵並進行模糊集群分析,找尋具有相似功能屬性的地區進行空間結構的探索,最後則透過國土利用調查進行驗證。而綜合流動人口結構特徵及活動人口時序變化,瞭解以大數據為基礎解析之都市空間結構。
實證成果指出,本研究所建構之分析架構具一定的解釋能力。依據平日及假日流量結構關係,將臺北市劃分為9個生活圈並判別定位,根據流量、中心度及空間交互作用等特徵將其分為核心生活圈、次生活圈及衛星生活圈,並描繪自微觀角度檢視之區域空間層次關係。另外,透過活動人口變化趨勢將臺北市的平日及假日從住宅至商業使用分別區分出4種不同的都市土地功能分類,與國土利用調查交叉比對後在住宅和商業機能下均有高達7成的檢測水準。並在將都市功能分區對照至生活圈區劃後,得出基於大數據所檢視的臺北市都市空間結構。
本研究的重點在於體現了人類的旅次活動與都市空間結構的耦合關係,除了探討實證地區之都市空間結構外,並確立了一套基於大數據檢視地區空間結構的流程。在探索的過程中驗證基於使用者行為的空間區劃及定義具有準確性及其價值,所得出的結論對於後續通盤檢討計畫抑或是資源調派等政策實務運用,均可作為空間規劃之依歸。
Urban spatial structure can be regarded as an integrated interaction of activities, people, and urban resources, with the distribution of functions and resources generating an internal sub-demand for travel. In contrast, the analysis of population movements and activity intensity can produce a bottom-up depiction of the spatial structure of residents' daily lives. Therefore, this study aims to capture the typical characteristics of urban units from the micro level of residents' perceptions and to reveal how individuals use urban space within the city from a spatial and temporal perspective. Finally, the study proposes an urban spatial structure identification method based on big human movement data. The Infomap network analysis is carried out with the data of boarding and descending on the bus representing the regional connection, exploring the urban spatial division under the interaction of space. And use the signaling data to explore the intensity changes of the active population, extract its temporal characteristics and carry out fuzzy cluster analysis to find areas with similar population intensity changes to explore functional attributes.
According to the research results, Taipei City is divided into nine living circles, and their positioning is determined. Area positioning is judged according to the flow and structural relationship. According to flow, centrality, and spatial interaction characteristics, the city was divided into main living circles, sub-living circles, and satellite living circles. They depict the regional spatial hierarchical relationship viewed from a microscopic perspective. In addition, through the changing trend of the active population, Taipei City is divided into four different urban land function classifications into weekdays and holidays. After comparing the urban functional zoning with the living circle zoning, the Taipei City metropolitan area based on big data is obtained.
中文文獻參考
龍瀛、張宇、崔承印 (2012)。利用公交刷卡數據分析北京職住關係和通勤出行。地理學報,67(10),1339-1352。 https://doi.org/10.11821/xb201210005
李子璋 (2019)。社會網路分析觀點下臺北公共自行車使用所呈現的空間結構。http://ir.lib.ncku.edu.tw/handle/987654321/203164
楊喜平、方志祥 (2018)。移动定位大數據視角下的人群移動模式及城市空間結構研究進展。地理科學進展,37,880-889。https:// doi.org/10.18306/dlkxjz.2018.07.002
周志龍 (2003)。後工業臺北多核心的空間結構化及其治理政治學。地理學報,34,1-18。
周易陵、陳則銘與鄭書恒. (2020)。手機信令應用於捷運路網規劃。中興工程,146, 65-71。 doi: 10.30154/SE
秦蕭、甄峰、熊麗芳、朱壽佳 (2013)。大數據時代城市時空間行為研究方法。地理科學進展,32(9),1352-1361。 https://doi.org/10.11820/dlkxjz.2013.09.005
英文文獻參考
Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3(3), 274-279. https://doi.org/10.1177/2043820613513390
De Montis, A., Caschili, S., & Chessa, A. (2013). Commuter networks and community detection: A method for planning sub regional areas. The European Physical Journal Special Topics, 215(1), 75-91. https://doi.org/10.1140/epjst/e2013-01716-4
Deitrick, W., Valyou, B., Jones, W., Timian, J., & Hu, W. (2013). Enhancing Sentiment Analysis on Twitter Using Community Detection. Communications and Network, 05(03), 192-197. https://doi.org/10.4236/cn.2013.53022
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174. https://doi.org/10.1016/j.physrep.2009.11.002
Grigg, D. (1965). THE LOGIC OF REGIONAL SYSTEMS. Annals of the Association of American Geographers, 55(3), 465-491. https://doi.org/10.1111/j.1467-8306.1965.tb00529.x
Guande, Q., Xiaolong, L., Shijian, L., Gang, P., Zonghui, W., & Daqing, Z. (2011). Measuring social functions of city regions from large-scale taxi behaviors.
Hao, J., Zhu, J., & Zhong, R. (2015). The rise of big data on urban studies and planning practices in China: Review and open research issues. Journal of Urban Management, 4(2), 92-124. https://doi.org/https://doi.org/10.1016/j.jum.2015.11.002
Hipp, J. R., Faris, R. W., & Boessen, A. (2012). Measuring ‘neighborhood’: Constructing network neighborhoods. Social Networks, 34(1), 128-140. https://doi.org/10.1016/j.socnet.2011.05.002
Kang, C., Liu, Y., Ma, X., & Wu, L. (2012). Towards Estimating Urban Population Distributions from Mobile Call Data. Journal of Urban Technology, 19(4), 3-21. https://doi.org/10.1080/10630732.2012.715479
Kong, X., Xia, F., Ma, K., Li, J., & Yang, Q. (2019). Discovering Transit-Oriented Development Regions of Megacities Using Heterogeneous Urban Data. IEEE Transactions on Computational Social Systems, 6(5), 943-955. https://doi.org/10.1109/tcss.2019.2919960
Kong, X., Xia, F., Wang, J., Rahim, A., & Das, S. K. (2017). Time-Location-Relationship Combined Service Recommendation Based on Taxi Trajectory Data. IEEE Transactions on Industrial Informatics, 13(3), 1202-1212. https://doi.org/10.1109/tii.2017.2684163
Liu, L., Hou, A., Biderman, A., Ratti, C., & Chen, J. (2009, 2009). Understanding individual and collective mobility patterns from smart card records: A case study in Shenzhen.
Liu, S., Zhang, L., Long, Y., Long, Y., & Xu, M. (2020). A New Urban Vitality Analysis and Evaluation Framework Based on Human Activity Modeling Using Multi-Source Big Data. ISPRS International Journal of Geo-Information, 9(11), 617. https://doi.org/10.3390/ijgi9110617
Liu, X., Gong, L., Gong, Y., & Liu, Y. (2015). Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 43, 78-90. https://doi.org/10.1016/j.jtrangeo.2015.01.016
Liu, X., Kang, C., Gong, L., & Liu, Y. (2016). Incorporating spatial interaction patterns in classifying and understanding urban land use. International Journal of Geographical Information Science, 30(2), 334-350. https://doi.org/10.1080/13658816.2015.1086923
Liu, X., Yan, X., Wang, W., Titheridge, H., Wang, R., & Liu, Y. (2021). Characterizing the polycentric spatial structure of Beijing Metropolitan Region using carpooling big data. Cities, 109, 103040. https://doi.org/https://doi.org/10.1016/j.cities.2020.103040
Liu, Y., Kang, C., Gao, S., Xiao, Y., & Tian, Y. (2012). Understanding intra-urban trip patterns from taxi trajectory data. Journal of Geographical Systems, 14(4), 463-483. https://doi.org/10.1007/s10109-012-0166-z
Liu, Y., Wang, F., Xiao, Y., & Gao, S. (2012). Urban land uses and traffic ‘source-sink areas’: Evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning, 106(1), 73-87. https://doi.org/https://doi.org/10.1016/j.landurbplan.2012.02.012
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577-8582. https://doi.org/10.1073/pnas.0601602103
Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2). https://doi.org/10.1103/physreve.69.026113
Ning, -. X., Ling, -. Y., & Jinxing, -. H. (2014). - Identifying Home-Work Locations from Short-term,Large-scale,andRegularly Sampled Mobile Phone Tracking Data. - Geomatics and Information Science of Wuhan University, - 39(- 6), - 750. https://doi.org/- 10.13203/j.whugis20140085
Niu, X., Ding, L., & Song, X. (2015). Understanding Urban Spatial Structure of Shanghai Central City Based on Mobile Phone Data [Article]. China City Planning Review, 24(3), 15-23. http://er.lib.ncku.edu.tw:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=126823237&lang=zh-tw&site=eds-live
Openshaw, S., & Veneris, Y. (2003). Numerical Experiments with Central Place Theory and Spatial Interaction Modelling. Environment and Planning A: Economy and Space, 35(8), 1389-1403. https://doi.org/10.1068/a35295b
Pei, T., Sobolevsky, S., Ratti, C., Shaw, S.-L., Li, T., & Zhou, C. (2014). A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science, 28(9), 1988-2007. https://doi.org/10.1080/13658816.2014.913794
Poorthuis, A. (2018). How to Draw a Neighborhood? The Potential of Big Data, Regionalization, and Community Detection for Understanding the Heterogeneous Nature of Urban Neighborhoods. Geographical Analysis, 50(2), 182-203. https://doi.org/10.1111/gean.12143
Ratti, C., Frenchman, D., Pulselli, R. M., & Williams, S. (2006). Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis. Environment and Planning B: Planning and Design, 33(5), 727-748. https://doi.org/10.1068/b32047
Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., & Giannotti, F. (2012). Discovering the Geographical Borders of Human Mobility. KI - Künstliche Intelligenz, 26(3), 253-260. https://doi.org/10.1007/s13218-012-0181-8
Rodrigue, J.-P., Comtois, C., & Slack, B. (2016). The Geography of Transport Systems. Routledge. https://doi.org/10.4324/9781315618159
Shevky, E., & Bell, W. (1955). Social area analysis; theory, illustrative application and computational procedures. Stanford University Press.
Sun, J. B., Yuan, J., Wang, Y., Si, H. B., & Shan, X. M. (2011). Exploring space–time structure of human mobility in urban space. Physica A: Statistical Mechanics and its Applications, 390(5), 929-942. https://doi.org/https://doi.org/10.1016/j.physa.2010.10.033
Šveda, M., Madajová, M. S., Barlík, P., Križan, F., & Šuška, P. (2020). Mobile phone data in studying urban rhythms: Towards an analytical framework. Moravian Geographical Reports, 28(4), 248-258. https://doi.org/doi:10.2478/mgr-2020-0018
Thiemann, C., Theis, F., Grady, D., Brune, R., & Brockmann, D. (2010). The Structure of Borders in a Small World. PLoS ONE, 5(11), e15422. https://doi.org/10.1371/journal.pone.0015422
Tu, W., Cao, J., Yue, Y., Shaw, S.-L., Zhou, M., Wang, Z., Chang, X., Xu, Y., & Li, Q. (2017). Coupling mobile phone and social media data: a new approach to understanding urban functions and diurnal patterns. International Journal of Geographical Information Science, 31(12), 2331-2358. https://doi.org/10.1080/13658816.2017.1356464
Wang, C., & Hess, D. B. (2021). Role of Urban Big Data in Travel Behavior Research. Transportation Research Record: Journal of the Transportation Research Board, 2675(4), 222-233. https://doi.org/10.1177/0361198120975029
Yang, X., Fang, Z., Yin, L., Li, J., Zhou, Y., & Lu, S. (2018). Understanding the Spatial Structure of Urban Commuting Using Mobile Phone Location Data: A Case Study of Shenzhen, China. Sustainability, 10(5), 1435. https://doi.org/10.3390/su10051435
Yongxi, G., Liu, Y., Yaoyu, L., Jian, Y., Zhongyuan, D., & Guicai, L. (2012). Exploring spatiotemporal characteristics of intra-urban trips using metro smartcard records.
Yu, Q., Li, W., Yang, D., & Zhang, H. (2020). Mobile Phone Data in Urban Commuting: A Network Community Detection-Based Framework to Unveil the Spatial Structure of Commuting Demand. Journal of Advanced Transportation, 2020, 1-15. https://doi.org/10.1155/2020/8835981
Yuan, Y., Raubal, M., & Liu, Y. (2012). Correlating mobile phone usage and travel behavior – A case study of Harbin, China. Computers, Environment and Urban Systems, 36(2), 118-130. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2011.07.003
Zaltz Austwick, M., O’Brien, O., Strano, E., & Viana, M. (2013). The Structure of Spatial Networks and Communities in Bicycle Sharing Systems. PLoS ONE, 8(9), e74685. https://doi.org/10.1371/journal.pone.0074685
Zhong, C., Arisona, S. M., Huang, X., Batty, M., & Schmitt, G. (2014). Detecting the dynamics of urban structure through spatial network analysis. International Journal of Geographical Information Science, 28(11), 2178-2199. https://doi.org/10.1080/13658816.2014.914521