簡易檢索 / 詳目顯示

研究生: 陳怡如
Chen, Yi-Ju
論文名稱: 應用空載光達及航照影像於崩塌地植生復育之研究
Application of Airbone LiDAR and Airphoto Imageries on Vegetation Recovery for Landslide Regions
指導教授: 吳銘志
Wu, Ming-Chee
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: 航照影像空載光達植生復育綠度指標
外文關鍵詞: Airphoto Imageries, Airbone LiDar, Vegetation Recovery, Greenness
相關次數: 點閱:77下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣近期的降雨情形深受極端性氣候的影響,因而造成天然災害率的增加。然而,水與人類的活動有著很密切的關係;其中,水庫為民生水源供應來源之一。水庫因其上游之崩塌地的崩積物成為水庫淤積的主要土砂來源;邊坡植生的復育為防治山崩再次復發的有效方式之一,然而山區植生監測往往受限於地形以及交通限制而導致監測困難。為此,本研究期以高解析度彩色正射影像配合空載光達,運用於崩塌地植被復育監測。本研究內容以臺灣地區容量最大之水庫「曾文水庫」為例。
    過去常利用多時期的航照判釋配合現地的定期監測,來獲取植生的水平維度分佈狀況,但由於近年來空載光達(Airborne LiDAR)取像技術的進步與普遍,對於植生垂直維度的分佈狀況之偵測也有相當的助益;因此,本研究結合了高解析度航測正射影像之植生的水平維度分佈狀況,以及利用空載光達分析植生之垂直維度的分佈狀況,說明以高解析度彩色正射影像配合空載光達,更能了解植生生長細緻情形。
    本研究將2012年崩塌地植生的生長狀況,與2013年同一崩塌地塊的植生生長狀況以累積分佈曲線方式予以呈現。研究分析結果顯示,該崩塌地塊已趨於穩定狀態;且由結果發現,地表植生指標較綠度指標更能描述植生之細節變化,更能貼近實際地呈現植生之健康度與高度變化資訊;進而成為評估區域之環境穩定度指標。

    This research expects to combine Colored Orthophotos in high definition with LiDAR to monitor the recovery of vegetation in slide lands, we would take the “Tseng-Wen Reservoir”, which has the highest capacity in Taiwan, as example.
    This research combines the horizontal distribution condition of vegetation which is taken by aerial Orthophotos in high definition with the vertical distribution condition of vegetation taken by Airborne LIDAR to indicate the results that combining Colored Orthophotos in high definition with LiDAR can have further understanding on the delicate growing conditions of vegetation.
    According to the research, using accumulative distribution curve to comparing the growing conditions of vegetation in land slide during 2012 with the growing conditions during 2013, the condition of land slide tend to be stable. Besides, the results show that the ground gurface vegetation index have more differently detailed descriptions. They can be more similar to the real health state of vegetation and present the high degree of information. Also, they are able to be the index, which can be used to evaluate the degree of stability of environments.

    摘要 iii ABSTRACT iv 誌謝 x 目錄 xi 表目錄 xiii 圖目錄 xiv 第一章 緒論 1 1-1崩塌地的類型 1 1-2長期現地監測的限制 4 1-3研究目的 8 1-4研究流程 9 第二章 區域概述 11 2-1地理位置 11 2-2水系與氣候 12 2-3地形與地勢 13 2-4區域地質概況 17 2-5土地利用概況 19 2-6區域人文與交通狀況 19 2-7現地概況 21 第三章 理論與方法 24 3-1 航照影像應用 24 3-2空載光達應用 25 3-3航照影像萃取綠度指標 26 3-4空載光達產製地表植生指標 33 3-5工作方法 45 第四章 結果與討論 48 4-1 綠度指標之崩塌地植生復育狀況 48 4-2地表植生指標之崩塌地植生復育狀況 50 4-3地表植生指標比較綠度指標之崩塌地植生復育狀況 56 第五章 結論與建議 58 5-1結論 58 5-2建議 59 參考文獻 60

    小出博,山崩れ,日本古今書院,東京,第14-150頁,1954。
    中央地質調查所全球資訊網,http://www.moeacgs.gov.tw/main.jsp,2014/09/11。
    內政部國土測繪中心全球資訊網,http://www.nlsc.gov.tw/websites/i_ext/default.aspx,2014/09/11。
    尤姝媚,應用多時序遙測影像於海岸濕地監測與評估,國立成功大學衛星資訊暨地球環境研究所碩士論文,第38-72頁,2009。
    王鑫、李碧霞、孫志鴻,石門集水區的地勢分析,地理學報第一~二十期,第28-53頁,1977。
    江山宏、林玉妹、羅健霖,九九峰崩塌地變遷監測之研究,明道管理學院環境規劃暨設計研究所碩士論文,第24-36頁,2005。
    江采薇,融合光達及高解析影像建立三維植生覆蓋模型,國立中央大學土木工程研究所碩士論文,第27-42頁,2006。
    江美瑩,土石流、土石崩塌、高土砂含量河(溪水)之探討,國立臺北大學自然資源與環境管理研究所碩士論文,第56-67頁,2004。
    行政院農業委員會,http://www.swcb.gov.tw/,2014/09/11。
    何心瑜、史天元,空載光達作業及品管流程之研究,航測及遙測學刊,第十二卷第二期,第165-177頁,2007。
    何心瑜、蕭國鑫、楊孟學、劉進金,結合航照與LiDAR應用於土地利用分類之研究,國土利用調查成果啟用暨學術研討會論文集,第65-77頁,2008。
    吳偉誠、張成華,遙測技術監測礦區殘留壁植被復育之研究-以亞泥新城山.礦場為例,國立東華大學自然資源與環境學系碩士論文,第28-88頁,2011。

    林雪美,台灣地區近三十年自然災害的時空特性,師大地理研究報告,第41期,第99-121頁,2003。
    林耿帆、邱彥瑋、張智昌、徐百輝,以物件導向結合影像與光達點雲資料之地物分類,臺灣地理資訊學會年會暨學術研討會論文集,第1-15頁,2011。
    連上堯,曾文溪流域水庫建設之回顧與展望曾文水庫防洪防淤策略,經濟部水利署南區水資源局,第3-34頁,2012。
    陳信雄、李錦育,森林對水資源涵養效益評估之研究,中華林學季刊,第五卷,第三期,第57-74頁,1986。
    陳信雄,崩塌地調查與分析,渤海堂出版社,臺北,第1-7頁,1995。
    陳建同,應用影像分段技術與多時段衛星影像於崩塌地植生復育成效分析研究,資源工程學系研究所碩士論文,第23-80頁,2008。
    陳鈞華,常態化植生指數標準差於土地利用分類之應用─以美濃中壇為例,屏東科技大學木工程系論文,第16-33頁,2008。
    陳秉豐,新興遙感探測之研究─認識光達(LiDAR)測量技術,工程技術類,1000331,第1-10頁,2011。
    陳蕙華,遙測衛星影像於南清公路崩塌地潛感分析之應用,逢甲大學環境資訊科技研究所碩士論文,第15-60頁,2005。
    國土測繪中心,http://www.moeacgs.gov.tw/main.jsp,2014/09/11。
    梁惠儀、林伯勳、王晉倫、鐘啟榮、邱世宜,應用NDVI探討石門水庫集水區植生復育成效,第三屆,水保技術研討會論文集,第2-6頁,2010。
    許君韶,區塊分割變遷偵測法於多時期衛星影像之應用,國立中央大學土木工程研究所碩士論文,第57-133頁,2005。
    湯舜閔、林耿帆,應用全波形空載雷射掃描資料於山區地物分類,國立政治大學地政研究所碩士論文,第22-177頁,2012。

    焦國模,森林航空測計學,南天書局有限公司,臺北,第312-522頁,1989。
    彭炳勳,應用空載光達資料推測林木樹高與葉面積指數,航測及遙測學刊,第十三卷,第二期,第85-100頁,2008。
    曾忠一,大氣衛星遙測學部編大學用書(七版),渤海堂文化出版,臺北,第222-583頁,2008。
    楊孟學,結合空載光達與多波段衛星影像於山崩自動分類,高雄師範大學碩士論文,第6-74頁,2007。
    董炤巖,整合地理資訊系統及遙測技術於崩塌地監測之研究,國立屏東科技大學森林系碩士論文,第23-65頁,2009。
    詹瑜璋,空載雷射測距掃描及其在地質與地形調查之應用,中央研究院週報,第1175期,2008。
    經濟部中央地質調查所,經濟部中央地調所活斷層分佈圖,臺灣活斷層資訊網,http://act.geo.ncu.edu.tw/gsfault.htm,2014/09/11。
    經濟部水利署,http://www.wra.gov.tw/,2014/09/11。
    農林航空測量所,http://www.afasi.gov.tw/,2014/09/11。
    農業知識入口網,http://kmweb.coa.gov.tw/mp.as,2014/09/11。
    廖偉民,土石流潛勢判定模式及土石壩滲流破壞之研究,國立中央大學土木工程研究所博士論文,第23-65頁,2001。
    鄭智仁,應用空載光達與正射影像以物件導向影像分析法進行自動化崩塌地偵測,國立成功大學碩士論文,第25-35頁,2010。
    劉守恆,衛星影像於崩塌地自動分類之研究。國立成功大學地球科學研究所碩士論文,第25-83頁,2002。
    劉治中、蕭國鑫,結合空載LiDAR與彩色航照應用於崩塌地研判,航測及遙測學刊,第十五卷,第一期,第111-122頁,2010。
    劉懿聰,植生葉面積指數及生物量與光譜反射特性關係之研究,國立嘉義大學森林暨自然資源研究所碩士論文,第12-94頁,2006。
    蕭國鑫、劉進金、游明芳、陳大科、徐偉城、王晉倫,結合空載LiDAR與航測高程資料應用於地形變化偵測,航測及遙測學刊,第十一卷,第三期,第283-295頁,2006。
    維基百科:曾文水庫,http://zh.wikipedia.org/wiki/%E6%9B%BE%E6%96%87%E6%B0%B4%E5%BA%,2014/09/11。
    謝豪榮,森林在水資源涵養效益評估之研究,集水區經營研習會講義,第1-15頁,1911。
    羅時凡,遙測技術應用森林健康監測,國立屏東科技大學森林系研究所碩士論文,第23-85頁,2007。
    Alexander, C., Tansey, K., Kaduk, J., Holland, D. and Tate, N.J., Backscatter Coefficient as an Attribute for the Classification of Full-Waveform Airborne Laser Scanning Data in Urban Areas, ISPRS Journal of Photogrammetry, pp. 423-432, 2010.
    Al-Hiyaly, S.A., Mcneilly, K.T. and Bradshaw, A.D., the Effect of Zinc Contamination from Electricity Pylons, Contrasting Patterns of Evolution In Five Grass Species, New Phytologist, Vol. 114, pp. 183-190, 1990.
    Antonarakis, A.S., Richards, K.S. and Brasinton, J., Object-Based Land Cover Classification Using Airborne Lidar, Remote Sensing of Environment, Vol. 112, pp. 2988-2988, 2008.
    Bradshaw, G.A., Semivariograms of Digital Imagery for Analysis of Conifer Canopy Structure, Remote Sensing, Vol. 34, pp. 167-178, 1990.
    Charaniya, A.P., Manduchi, R. and Lodha, S.K., Supervised Parametric Classification of Aerial Lidar Data, Computer Vision and Pattern Recognition Workshop, pp. 30-37, 2004.
    Cohen, W.B., Response of Vegetation Indices to Changes In Three Measures of Leaf Water Stress, Photogrammetric Engineering and Remote Sensing, Vol.57, No. 2, pp. 195-202, 1991.
    David, M. and Gates, D.M., Physical and Physiological Properties of Plants, Remote Sensing with Special Reference to Agriculture and Forestry, National Academic of Science, pp. 224-233, 1970.

    Dibiase, R.A. and Lamb, M.P., Vegetation and Wildfire Controls On Sediment Yield In Bedrock Landscapes, Geophysical Research Letters, Vol. 40, pp. 1093-1097, 2013.
    Du, Y., Guindon, B. and Cihlar, J., Haze Detection and Removal In High Resolution Satellite Image with Wavelet Analysis, IEEE Transactions On Geoscience and Remote Sensing, Vol. 40, No. 1, pp. 210-217, 2002.
    Emerson, V.M., Formaggio, A.R. and Maed, E.E., Landslide Inventory Using Image Fusion Techniques In Brazil, International Journal of Alied Earth Observation and Geoinformation, Vol. 11, pp. 181-191, 2009.
    Emerson, C.W., Lam, N.S.N, and Quattrochi, D.A., A Comparison of Local Variance, Fractal Dimension, and Moran's I as Aids to Multispectral Image Classification, International Journal of Remote Sensing, Vol. 26, Issue 8, pp. 1575-1588, 2005.
    Evans, I.S., General Geomorphometry, Derivatives of Altitude, and Descriptive Statistics, In Chorley, R.J. (Ed.), Spatial Analysis In Geomorphology, London, pp. 17-90, 1972.
    Fookes, P.G., Sweeney, M., Manby, C.N.D. and Andmartin, R.P., Geological and Geotechnical Engineering Aspects of Low Cost Roads In Mountainous Terrain. Engineering Geology, Vol. 21 , pp. 152, 1985.
    Fuchs, M., Canopy Thermal Infrared Observations In: Instrumentation for Studying Vegetation Canopies for Remote Sensing In Optical and Thermal Infrared Regions (ed. by Goel, N.S. and Norman, J.M.), Harwood Acad. Publ. G, pp. 91-99, 1990.
    Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D. and Dorsch, S. J., Analysis of lidar-Derived Topographic Information for Characterizing and Differentiating Landslide, Geomorphology, Vol. 73, pp. 131-148, 2006.
    Goodchild, M.F. and Mark, D.M, the Fractal Nature of Geographic Phenomena , Annals of the Association of American Geographers, Vol. 77, No. 2, pp. 265-278, 1978.
    Green, R.O., Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , Remote Sensing Environment, Vol. 65, pp. 227-248, 1998.
    Harsanyi, J.C. and Chang, C.I., Hyperspectral Image Classification and Dimensionality Reduction: an Orthogonal Subspace Projection Approach. IEEE Trans. On Geoscience and Remote Sensing, Vol. 32, No. 4, pp. 779-785, 1994.
    Horn, B.K.P., Hill-Shading and the Reflectance Map, Proceedings of the IEEE, Vol. 69, pp. 14-47, 1981.
    Jones, K.H., A Comparison of Algorithms Used to Compute Hill Slope as a Property of the DEM, Computers and Geosciences, Vol. 24, pp. 315-323, 1998.
    Lin, W.T, Lin, C.Y, and Chou, W.C., Assessment of Vegetation Recovery and Soil Erosionat Landslides Caused By a Catastrophic Earthquake : A Case Study In Central Taiwan, Ecological Engineering, Vol. 28, pp. 79-89, 2006.
    Mark, D.M., Geomorphometric Parameters, A Review and Evaluation, Geografiska Annaler, Series A, Physical Geography, Vol. 57, pp. 165-177, 1975.
    Mckean, J., and Roering, J., Objective Landslide Detection and Surface Morphology Mapping Using High-Resolution Airborne Laser Altimetry, Geomorphology, Vol. 57, pp. 331-351, 2004.
    Pearson, R.L. and Miller, L.D., Remote Maing of Standing Crop Biomass for Estimation of the Productivity of the Short Grass Prairie, Pawnee National Grassland, Colorado, Proceeding of the Eighth International Symposium, pp. 37-51, 1972.
    Roering, J.J., Stimely, L.L., Mackey, B.H. and Schmidt, D.A., Using Dinsar, Airborne Lidar, and Archival Air Photos to Quantify Landsliding and Sediment Transport, Geophysical Research Letters, Vol. 36, pp. 19-42, 2009.
    Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W., Monitoring Vegetation Systems in the Great Plains with ERTS, Third ERTS Symposium, NASA SP-351 I, pp. 309-317, 1973.
    Sharp, C.F.S., Landslides and Related Phenomena, New Jersey: Pageant, pp. 103-155, 1938.
    Sharpnack, D.A. and Akin, G., an Algorithm for computing Slope and Aspect from Elevations, Photogrammetric Engineering, Vol. 35, No. 3, pp. 247-248, 1969.
    Stark, C.P. and Hovius, N., The Characterization of Landslide Size Distributions, Geophysical Research Letters, Vol. 28, pp. 1091-1094, 2001.
    Vernes, D.J., Slope Movement Types and Processes, In: Special Report 176, Schuster, R.L., and Krizek, R.J. (Ed.) TRB, National Research Council, pp. 11-33, 1978.
    Wang, C.K., Exploring Weak and Overlapped Returns of A Lidar Waveform with a Wavelet-Based Echo Detector, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXXIX-B7, pp. 46-51, 2012.
    Westen, C.V., Remote Sensing for Natural Disaster Management, International Archives of Photogrammetry and Remote Sensing, Vol. 1609-1617, Amsterdam, pp. 55-63, 2000.
    Yang, M.S. and Lo, C.F., Real-Time Kinematic GPS Positioning for Centimeter Level Ocean Surface Monitoring, Proc, National Science Council TAIWAN, Vol. 24, No. 1, pp. 79-85, 2000.
    Yang, M.S. and Wu, M.C., Landslides Vegetation Restoration Monitoring By Libar Surface Roughness and Aerial Photography, International Society of Refractive Surgery (ISRS), Vol.7, pp. 0900-0919, 2014.
    Zhou, Q. and Liu, X., Error Analysis in Grid-Based Slope and Aspect Algorithms, Photogrammetric Engineering and Remote Sensing, Vol. 8, pp. 957-962, 2004.

    下載圖示 校內:2019-09-12公開
    校外:2019-09-12公開
    QR CODE