簡易檢索 / 詳目顯示

研究生: 劉炳宏
Liou, Bing-Hung
論文名稱: 應用於轉盤之微型磁性高度調整器設計與控制
Design and Control of Micro-Magnetic Height Adjuster for Rotating Disc
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 114
中文關鍵詞: 微型致動器微型感測器微型線圈
外文關鍵詞: micro-sensor, micro-actuator, micro-coil
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一個可以同時達到高度調變致動與感測其高度變化能力之新式微型磁力模組。此磁力模組本質上近似於微尺度下之螺線管線圈,可調變微型陀螺儀中之懸浮轉盤,去除非柯氏力之因素所造成之傾斜與偏擺,使微型陀螺儀可正確量測外加之角激勵。當微型磁力高度調整器(Micro-Magnetic Height Adjuster, MMHA)之主線圈通入電流時,即可作為致動器調控懸浮轉盤。而二級線圈則作為感測器偵測懸浮轉盤與微型磁力高度調整器間之氣隙變化。

    An innovative magnetic module which is concurrently capable of performing as an actuator and a sensor is proposed and illustrated. The magnetic module is basically similar to a micro-scale solenoid coil which is employed to actively adjust the height of a seismic rotating disc used in a gyroscope so that the induced pitch angle by Coriolis effect, purely due to exerted angular excitation, can be accurately measured. That is, the micro-magnetic module acts like an actuator for height regulation on the seismic rotating disc by applying appropriate electric current to the primary coil of the Micro-Magnetic Height Adjuster (MMHA). On the other hand, the secondary coil pair of the MMHA acts as a sensor which can detect the gap change between the seismic rotating disc doped by metal material, and the micro-magnetic module.

    IV 目錄 中文摘要......................................................................................................... Ⅰ 英文摘要......................................................................................................... Ⅱ 致謝................................................................................................................. Ⅲ 目錄................................................................................................................. Ⅳ 表目錄............................................................................................................. Ⅶ 圖目錄............................................................................................................. Ⅷ 第一章 緒論..................................................................................................... 1 1-1 前言................................................................................................... 1 1-2 文獻回顧........................................................................................... 2 1-3 研究動機與目的............................................................................... 3 1.4 論文架構............................................................................................ 4 第二章 微型磁力高度調整器之設計與操作原理........................................ 8 2-1微型磁力高度調整器之設計............................................................ 8 2-2新式微型金字塔狀螺線管線圈之設計.......................................... 10 2-3微型磁力高度調整器之操作原理.................................................. 12 2-4微型磁力高度調整器之模擬分析.................................................. 14 2-4-1驅動主線圈分析...................................................................... 14 2-4-2感測二級線圈分析.................................................................. 18 第三章 微型磁力高度調整器之動態分析.................................................. 42 3-1懸浮轉盤之動態方程式.................................................................. 42 3-2懸浮轉盤模態之開路模擬與分析.................................................. 50 3-2-1狀態空間表示式...................................................................... 50 3-2-2品質因子.................................................................................. 56 3-2-3懸浮轉盤之控制...................................................................... 57 3-3懸浮轉盤之控制.............................................................................. 58 第四章 微型磁力高度調整器之驅動與感測電路設計.............................. 71 4-1驅動電路設計.................................................................................. 72 4-2感測電路設計.................................................................................. 75 第五章 微型磁力高度調整器之製程設計.................................................. 88 5-1金字塔錐狀凸塊基底設計與製作.................................................. 88 5-2金字塔狀螺線管線圈製作流程...................................................... 92 5-3製程結果與遭遇困難...................................................................... 94 第六章 結論與未來展望............................................................................ 106 6-1 結論............................................................................................... 106 6-2 未來展望....................................................................................... 107 參考文獻....................................................................................................... 109 自述................................................................................................................114

    參考文獻

    [1] C. Acar, “Robust Micromachined Vibratory Gyroscope,” Ph.D. Thesis, Universuty of California at Berkeley, 2004.

    [2] R. linnemann, P. Woias, C. D. Senfft, J. A. Ditterich , “A Self-Priming and Bbubble-Tolerant Piezoelectric Silicon Micropump for Liquids and Gases”, Proceedings IEEE Micro Electro Mechanical Systems, ,1998, pp. 532-537.

    [3] C. C. Liu, “Optimal Efficiency Analysis of Micro Electro-Magnetic Pump”, Thesis, National Cheng Kung University, Taiwan, 2002.

    [4] C. T. Pan, H. Yang, M. C. Chou, S. C. Shen, “Integrated electromagnetic microactuators with a large driving force”, Microsystem Technologies, Vol. 12, No. 1-2 SPEC. ISS., 2005, pp. 173-179.

    [5] C. H. Ahn, M. G. Allen, “A Comparison of Two Micromachined Inductors (Bar- and Meander- Type) for Fully Integrated Boost DC-DC Power Converters”, IEEE Transactions on Power Electronics, Vol.11, No.2, 1996, pp. 239-245.

    [6] M. Parameswaran, Lj. Ristic, K. Chau, A. M. Robinson, W. Allegretto, “CMOS Electrothermal Microactuators,” Proceedings IEEE Micro Electro Mechanical Systems, Vol. 14-11, 1990, pp. 128-131.

    [7] D. J. Hagemaier, “Fundamental of Eddy Current Testing”, TheAmerican Society for Nondestructive Testing, 1990.

    [8] S. Thirunavukkarasu, “Development of Eddy Current Non-destructive Testing Procedure for Quality Control of Thin Walled Nickel Tubes”, Insight- Non-Destructive Testing and Condition Monitoring, Vol.46, No. 9, 2004, pp. 533-536.

    [9] 谷腰欣司,『馬達驅動電路技術』,建興出版社,2003。

    [10] 陳連春,『高頻率電路設計要訣』,建興出版社,1986。

    [11] 浩司,『感測器的動作分析與100%利用』,建興出版社,1993。

    [12] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgatel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions-PartⅠ. Orientation Dependence and Behavior of Passivation Layers”, Journal of the Electrochemical Society, Vol.137, No. 11, 1990, pp. 3612-3626.

    [13] Y. Backlund, L. Rosengren, “New shapes in (100) Si Using KOH and EDP etches”, Journal of Micromechanics and Microengineering, Vol. 2, 1992, pp. 75-79.

    [14] G. K. Mayer, H. L. Offereins, H. Sandmaier, K. Kuhl, “Fabrication of Non-Underetched Convex Corners in Anisotropic Etching of (100)-Silicon in Aqueous KOH with Respect to Novel Micromechanic Elements”, J. Electrochem. Soc., Vol. 137, No. 12, 1990, pp. 3947-3951.

    [15] X. P. Wu, W. H. Ko, “Compensating Corner Undercutting in Anisotropic Etching of (100) Silicon”, Sensors and Actuators, Vol. 18, 1989, pp. 207-215.

    [16] B. Puers, W. Sansen, “Compensation Structures for Convex Corner Micromachining in Silicon”, Sensors and Actuators, A21-A23, 1990, pp. 1036-1041.

    [17] M. Bao, C. Burrer, J. Esteve, J. Bausells, S. Marco, “Etching front Control of <110> Strips for Corner Compensation”, Sensors and Actuators, A37-A38, 1993, pp. 727-732.

    [18] Q. Zhang, L. Liu, Z. Li, “A New Approach to Convex Corner Compensation for Anisotropic Etching of (100)Si in KOH”, Sensors and Actuators, A56, 1996, pp. 251-254.

    [19] W. Lang, “Silicon Microstructuring Technology”, Materials Science and Engineering, Vol. 17, No. 1, 1996, pp. 1-55.

    [20] A. Beyzavi, N. T. Nguyen, “Modeling and optimization of planar microcoils”, Journal of Micromechanics and Microengineering, Vol. 18, No. 9, 2008, pp. 095018.

    [21] N. N. Rao, “Elements of Engineering Electromagnetics”, 6th Edition,
    Prentice Hall, 2004.

    [22] H. Koser, J. H. Lang, “Magnetic Induction Micromachine—Part I. Design and Analysis”, Journal of Microelecromechanical System, Vol. 15, No. 2, 2006, pp. 415-426.

    [23] F. Cros, H. Koser, M. G. Allen, J. H. Lang, “Magnetic Induction Micromachine—Part Ⅱ. Fabrication and Testing”, Journal of Microelecromechanical System, Vol. 15, No. 2, 2006, pp. 427-439.

    [24] H. Koser, J. H. Lang, “Magnetic Induction Micromachine—Part Ⅲ. Eddy Currents and Nonlinear Effects”, Journal of Microelecromechanical System, Vol. 15, No. 2, 2006, pp. 440-456.

    [25] Y. Perriard, O. Scaglione, C. Koechli, J. Persson, “Self-Sensing Methods to Drive Micro-Machines”, Physics of Semiconductor Devices, No. 12, 2007, pp. 639-644.

    下載圖示 校內:2010-07-20公開
    校外:2012-07-20公開
    QR CODE