| 研究生: |
簡偉倫 Jain, Wei-Luen |
|---|---|
| 論文名稱: |
PET纖維接枝羧基應用於重金屬回收之研究 Application of carboxyl graft to PET fiber on heavy metals recovery |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 重金屬回收 、丙烯酸接枝 、PET纖維 |
| 外文關鍵詞: | heavy metal recovery, acrylic acid grafting, PET fiber |
| 相關次數: | 點閱:118 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以二苯甲醯過氧化物(BPO)為起始劑活化聚對苯二甲酸乙二酯(PET)纖維表面,再以丙烯酸(AAc)為單體行接枝聚合反應製備羧基型離子交換材(carboxyl ion-exchanger)。首先改變接枝參數,探討不同接枝條件對PET吸附材接枝成效之影響,選擇最適接枝參數製備PET吸附材,於不同條件進行吸附試驗,探討羧基型吸附材對銅離子吸附效能及行為。最後選擇適當的脫附劑討論銅離子脫附回收成效及PET吸附材再生耐用性,並以模擬廢水和實廠廢水,評估本研究製備之吸附材應用於廢水處理之可行性。
實驗結果顯示添加1 M丙烯酸單體、以0.1 M硫酸提高0.002 M BPO催化能力、接枝時間4 hr、接枝溫度80oC為最適接枝條件,製備之PET羧基型吸附材最大接枝率為12%。由銅離子吸附去除實驗結果顯示,pH=4、反應吸附時間60分鐘,羧基型吸附材可有效將50 mg/L銅溶液處理達放流水法規標準3 mg/L以下,其吸附量約達20 mg-Cu/g-polymer。另外,在脫附試驗中,得知HNO3為最適脫附劑,於濃度0.01 N、脫附時間1小時,可得 95%以上銅脫附率,且經脫附的吸附材繼續進行二次吸附,其吸附量上升至27.4 mg-Cu/g-polymer,經五批次吸/脫附實驗,仍有95%吸附效果,顯示其再生特性良好。此外,PET吸附材對模擬廢水中重金屬選擇性吸附效果依序為Pb2+>Cu2+>Ni2+,將其應用於實廠含銅電鍍廢水下,可有效吸附回收銅,其吸附量達0.37 mmol-Cu/g-polymer,因此PET羧基型吸附材深具應用潛力。
The surface modification of PET fiber in this study was done by Benqzoyl peroxide activation and acrylic acid grafting. Acrylic acid monomer was grafted for the preparation of carboxyl type ion-exchange material. To exam the influence of different operating parameters on the PET adsorption material grafting effect; first of all, choose the optimal grafting parameter to prepare PET adsorption material, and carry out the adsorption experiments under different conditions to exam carboxyl-type adsorption of copper ion adsorption material performance and behavior. Lastly, select the appropriate desorption agent to discuss the effectiveness of copper ion desorption, recycling adsorption and durability of adsorption material. Moreover, simulations of wastewater and plant wastewater were used to evaluate the feasibility of the prepared adsorption materials.
The results show that optimal grafting conditions are with additions of 1M acrylic monomers, 0.1 M sulfuric acid to enhance the catalyzing capacity of 0.002 M BPO, grafting time of 4 hours and grafting temperature of 80oC. The best graft percentage of prepared carboxyl-type adsorption material is 12%. The results from copper ions removal experiment shows that when pH = 4 and adsorption time of 60 minutes, carboxyl adsorptive material can effectively treat copper solution from originally 50mg/L to under the regulatory standards of 3 mg/L, the adsorption amount is about 20 mg-Cu /g-polymer. In addition, obtaining from the desorption experiment, the optimal agent is HNO3, and at the concentration of 0.01N and desorption time of 1 hour, the copper desorption rate can reach more than 95%. Moreover, when continued with second adsorption, the adsorption capacity increased to 27.4 mg-Cu/g-polymer. After five batches of adsorption and desorption experiments, the adsorption effect still remains over 95%, which shows a good quality of regeneration property.
Furthermore, the adsorption selectivity of PET material to heavy metals in wastewater is Pb2+> Cu2+> Ni2+. When applied to copper electroplating wastewater, copper can be effectively adsorbed and recovered. The adsorption capacity is up to 0.37 mmol-Cu/g-polymer, Hence PET carboxyl-type adsorption material has a great potential for heavy metal recovery application.
Anirudhan, T.S., Unnithan, M.R., Divya, L. and Senan, P., 2007. Synthesis and Characterization of Polyacrylamide-Grafted Coconut Coir Pith Having Carboxylate Functional Group and Adsorption Ability for Heavy Metal Ions. Journal of Applied Polymer Science, 104(6), pp. 3670-3681.
Azizinejad, F., Talu, M., Abdouss, M., Shabani, M., 2004. An Investigation of the Grafting of Acrylic Acid/Methyl Methacrylate Mixture onto Poly(ethylene terphthalate) Fiber. Iranian Polymer Journal, 14(1), pp. 33-38.
Bailey, S.E., Olin, T.J., Bricka, R.M. and Adrian, D.D., 1999. A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), pp. 2469-2479.
Bhattacharya, S.D. and Inamdar, M.S., 2007. Polyacrylic Acid Grafting Onto Isotactic Polypropylene Fiber: Methods, Characterization, and Properties. Journal of Applied Polymer Science, 103(2), pp. 1152-1165.
Chansook, N. and Kiatkamjornwong, S., 2003. Ce(IV)-Initiated Graft Polymerization of Acrylic Acid onto Poly(ethylene terephthalate) Fiber. Journal of Applied Polymer Science, 89(7), pp. 1952-1958.
Chowdhury, P. and Banerjee, M., 1998. Graft Polymerization of Methyl Methacrylate onto Polyvinyl Alcohol Using Ce4+ Initiator. Journal of Applied Polymer Science, 70(3), pp. 523-527.
Coskun, R., Soykan, C. and Sacak, M., 2006. Removal of some heavy metal ions from aqueous solution by adsorption using poly(ethylene terephthalate)-g-itaconic acid/acrylamide fiber. Reactive and Functional Polymers, 66(6), pp. 599-608.
Duann, Y.F., Chen, Y.C., Shen, J.T., Lin, Y.H., 2004. Thermal induced graft polymerization using peroxide onto polypropylene fiber. Polymer, 45, pp. 6839-6843.
EI-sawy, N.M., Adsorption of VO2+ by poly[(tetrafluoroethylene)-co- (perfluorovinylether)] copolymer grafted with acrylic acid usingγ-irradiation. Polymer International, 53, pp. 212-217.
Guclu, G., Keles, S. and Guclu, K., 2006. Removal of Cu2+ Ions from Aqueous Solutions by Starch-Graft-Acrylic Acid Hydrogels. Polymer-Plastics Technology and Engineering, 45(1), pp. 55-59.
Gurdag, G., Guçlu, G. and Ozgumu S., 2001. Graft Copolymerization of Acrylic Acid onto Cellulose: Effects of Pretreatments and Crosslinking Agent. Journal of Applied Polymer Science, 80(12), pp. 2267-2272.
Keles, H. Çelk, M., Saçak, M. and Aksu, L., 1999. Graft Copolymerization of Methyl Methacrylate upon Gelatin Initiated by Benzoyl Peroxide in Aqueous Medium. Journal of Applied Polymer Science, 74(6), pp. 1547-1556.
Keles, S. and Guclu, G., 2006. Competitive Removal of Heavy Metal Ions by Starch-Graft-Acrylic Acid Copolymers. Polymer-Plastics Technology and Engineering, 45(3), pp. 365-371.
Karakisla, M., 2003. The adsorption of Cu(II) ion from aqueous solution upon acrylic acid grafted poly(ethylene terephthalate) fibers. Journal of Applied Polymer Science, 87, (8), pp. 1216-1220.
Kondo, Y.; Miyazaki, K.; Takeuchi, N.; Sakurai, K.; Kaneko, J. i., 2006. Hydrophilization of PET wire mesh in paper manufacture by electron beam irradiation induced graft polymerization. Sen'i Gakkaishi, 62, (5), pp. 95-99.
Lee, S.D.; Hsiue, G.H.; Kao, C.Y., 1996. Preparation and characterization of a homobifunctional silicone rubber membrane grafted with acrylic acid via plasma-induced graft copolymerization. Journal of Polymer Science, Part A: Polymer Chemistry, 34, (1), pp. 141-148.
Lu, W.L.; Huang, C.Y.; Roan, M.L., 2003. Effect of plasma treatment on the degree of AAm grafting for high-density polyethylene. Surface and Coatings Technology, 172, (2-3), pp. 251-261.
Makhlouf, C., Marais, S., Roudesli, S., 2007. Graft copolymerization of acrylic acid onto polyamide fiber. Applied Surface Science, 253, pp. 5521-5528.
Randen, L., Patterson, Damian, B., Rossum and Donald, L., Gill., 1999 .Store-Operated Ca21 Entry: Evidence for a Secretion-like Coupling Model. Cell, 98, pp. 487-499.
Sacak, M., Sertkaya, F. and Talu, M., 1992. Grafting of Poly(ethylene Terephthalate) Fibers with Methacrylic Acid Using Benzoyl Peroxide. Journal of Applied Polymer Science, 44(10), pp. 1737-1742.
Shukla, J.S. and Sharma, G.K., 1987. Graft Copolymerization of Methyl Methacrylate onto Wool Initiated By Ceric Ammonium Nitrate-Thioglycolic Acid Redox Couple in Presence of Air. IV. Journal of Polymer Science: Part A: Polymer Chemistry, 25(2), pp. 595-605.
Uchida, E.; Iwata, H.; Ikada, Y., Surface structure of poly(ethylene terephthalate) film grafted with poly(methacrylic acid). Polymer 2000. 41, (10), pp. 3609-3614
Vitta, S. B.; Stahel, E. P.; Stannett, V. T., 1986. Prepration and Properties of Acrylic and Methacrylic Acid Grafted Cellulose Prepared by Ceric ion Initiation. II. Water Retention Properties. Journal of Applied Polymer Science, 32, (7), pp. 5799-5810
Wang, W., Wang, L., Chen, X., Yang, Q., Sun, T. and Zhou, J., 2006. Study on the Graft Reaction of Poly(propylene) Fiber with Acrylic Acid. Macromolecular Materials and Engineering, 291(2), pp. 173-180.
Zumdahl, S. S., Chemistry. D.C.Heath and company, 1986.
行政院經濟部工業局統計資料,2007。
環保署廢棄物申報統計資料,2008。
李育德,高分子導論(四版),黎明書店局,1987。
林建中,高分子化學原理 第九版,歐亞書局,1985。
林建中,高分子材料性質與應用,高立圖書有限公司,1998。
莊和達,聚合反應原理(下),復文書局,1977。
張益國,黃酸鹽程序去除銅離子及其生成物之穩定性,國立成功大學環境工程學系博士論文,台灣台南,2003。
陳滄欽,澱粉黃酸鹽程序捕集及熱處理回收重金屬之研究,國立成功大學環境工程學系碩士論文,台灣台南,2004。.
陳博洋,聚丙烯纖維經乙烯基單體接枝改質之研究,中國文化大學材料科學與製造研究所,2006。
黃敬泓,常溫電漿改質PET纖維接枝丙烯酸去除重金屬離子之研究,國立成功大學環境工程學系碩士論文,台灣台南,2008。
楊萬發,水及廢水處理化學,茂昌圖書有限公司,1999。
薛敬和,高分子化學,高立圖書有限公司,1988。
鐘裕達,羧基型離子交換材製備及回收銅之研究,國立成功大學環境工程學系碩士論文,台灣台南,2007。
蘇心敏,常溫電漿改質聚丙烯纖維接枝硫脲去除銅離子之可行性,國立成功大學環境工程學系碩士論文,台灣台南,2006。