| 研究生: |
吳昆達 Wu, Kun-Ta |
|---|---|
| 論文名稱: |
低壓環境下陶瓷漿料脫水之腔體設計 Design of Low Pressure Chamber for Drying Ceramic Slurry |
| 指導教授: |
邱政勳
Chiou, Jenq-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 陶瓷粉體 、真空 、脫水 、溴化鋰 |
| 外文關鍵詞: | Ceramic particles, Vacuum, Drying, Lithium bromide |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米陶瓷粉體的製程中,液相法為最常使用的一種方法,因為以液相法製得之粒子均勻性最高,成本也最低,而脫水乾燥是其中一個最重要的步驟。目前工業界與學界對奈米陶瓷微粒有不同的乾燥方法,但每種方法都有不同程度之凝聚現象。
在本研究裡首先提出一真空乾燥機的理論,包括三個子系統:膨脹系統、吸濕系統及粉體收集系統,操作原理為欲利用真空乾燥在低壓時,液態溶液瞬間閃發成汽(氣態),此時液滴會瞬間膨脹擴散,因水汽分子向外擴散,理論上應可避免粉體的凝聚,再利用濃溴化鋰溶液的強吸濕性持續帶走閃發後之水汽,來維持真空腔體之真空度,同時乾燥後的超細粉體也可在真空的環境下更有效率地快速收集。
溴化鋰吸濕系統是此真空乾燥機最關鍵的一個系統,能持續地吸收水汽才能達到連續乾燥的目的,研究者適度地修改ABSIM軟體來模擬此真空乾燥系統,並由模擬得到之結果設計吸濕系統,未來則以本設計為藍圖,作為測試水汽吸收率的吸濕實驗設備。
In terms of product quality, the liquid-phase method is considered the best method among several processes in the production of nano ceramic particles. Drying is therefore an essential procedure in this kind of production method. There are several methods for drying ceramic particles in the industries and academia, but different degrees of agglomeration are found during the drying process.
The researcher proposed “the vacuum drying device theory” firstly, the device including three systems: expansion system, absorption of water vapor into lithium bromide system, and particles collection system. The operating principle is that the liquid water will instantaneously flash into water vapor at low pressure state. The outward expansion force during flashing could be able to prevent agglomeration. And the low pressure can be maintained by way of the absorption water vapor by lithium bromide solutions continuously. Furthermore, the drying ceramic particles can be collected quickly.
Absorption of water vapor into LiBr system is the key point for vacuum drying device, and absorption of water vapor continuously is the final objective. The researcher modifies the ABSIM code modestly to simulate the vacuum drying system and design the absorption of water vapor system from the simulative conclusion. In the future work, the researcher use the designed system to set up the experimental equipment for testing.
[1] 奈米國家型科技計畫,取自http://nano-taiwan.sinica.edu.tw,2008年5月。
[2] 經濟部技術處,微奈米技術於電機能源產業之應用研究,經濟部技術處,台北,Nov. 2002。
[3] Advanced ceramic powders and nano ceramic powders, Business Communications Co., Inc. (BCC) report, 2003.
[4] Zhang L. D., Nanomaterials, Chemical Industry Press, China, 2000.
[5] Luna, W. L., Gao, L., Guo, J. K., Study on drying stage of nanoscale powders preparation, Nanostructured Materials, Vol.10, No.7, pp.1119-1125, 1998.
[6] Rumpf, H., Schubert, H., Adhesion Forces in Agglomerates in Ceramic Processing, Ceramic Processing before Firing, Wiley, New York, pp.357-376, 1978.
[7] 劉志強、李小斌、彭志宏、童斌、劉桂華,濕化學法制備超細粉末過程中的團聚機理與消除方法,化學通報,Vol.7,pp.54-57,1999。
[8] Wang, B., Zhang, W., Preparation in Drying Technology for Nanomaterials, Drying Technology, Vol.23, pp.7-23, 2005.
[9] 經濟部工業局,乾燥技術效率提升技術手冊,經濟部工業局,台北,Nov. 2003。
[10] Pan, Z. C. et al., Preparation of Nanometer CeO2 in Microwave-Induced Method, Journal of the Chinese Rare Earth Society, Vol.22 Spec Issue, pp.539-541, Aug. 2004.
[11] Cao, A. H., Preparation of nanocrystalline alumina powder by microwave drying, Journal of Tianjin Polytechnic University, Vol.21, No.4, pp.25-27 ,2002.
[12] Okuyama, K., Lenggoro, I. W., Preparation of nanoparticles via spray route, Chemical Engineering Science, Vol.58, pp.537-547, 2003.
[13] Jeffrey, O. H. S., Zhang, Y., Warren, H. F., Wilson, H. R., Raimar, L., Formulation and characterization of spray-dried powders containing nanoparticles for delivery to the lung, International Journal of Pharmaceutics, Vol.269, pp.457-467, 2004.
[14] Iskandar, F., Gardon, L., Okuyama, K., Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol, Journal of Colloid and Interface Science, Vol.265, pp.296-303, 2003.
[15] Sun, H. L., The Technology Study of Microencapsulation by Spray Drying, Chemical Industry Times, Vol.19, No.10, pp.16-23, 2005.
[16] Zhang, J. C., Gao, W., Cao, W. L., Hu, Z. H., A study on the synthesis of ZnO nanoparticles by supercritical fluid drying, Materials Science & Technology, Vol.10, No.3, pp.251-255, Sep. 2002.
[17] Zhang, J. C., Cao, W. L., Yu, D. X., Shi, J. H., Dou, Z. C., Preparation of TiO2 Ultrafine Powder in Terms of SCFD Technique, Journal of Inorganic Materials, Vol.14, No.1, pp.29-35, 1999.
[18] Hu, H. K., Gan, L. H., Li, G. M., Sha, H. X., Chen, L. W., Supercritical Drying Technology, Laboratory Research and Exploration, Vol.19, No.2, pp.33-35, 2000.
[19] Novak, Z., Knez, Z., Ban, I., Drofenik, M., Synthesis of barium titanate using supercritical CO2 drying of gels, Journal of Supercritical Fluids, Vol.19, pp.209-215, 2001.
[20] Peng, T. Y., Du, P. W., Hu, B., Jiang, Z. C., Preparation of Nanoscale Alumina Powder by Heterogeneous Azeotropic Distillation Processing, Journal of Inorganic Materials, Vol.15, No.6, pp.1097-1101, Dec. 2000.
[21] Shen, X. Q., Li, Z. J., Yao, H. C., Preparation and Mechanism of Nanometer Sized Silica Powder by Azeotropic Distillation Method, Journal of Zhengzhou University, Vol.34, No.2, pp.88-91, Jun. 2002.
[22] Dai, Y. L., Hong, L., Shi, L. Y., Preparation of Nanometer Sized Magnesium Hydroxide Using Precipitation - Azeotropic Distillation Method, Journal of Shanghai University, Vol.9, No.5, pp.402-409, Oct. 2003.
[23] Wang, B. H., Zhang, W., Zhang, W. B., Fan, F. R., Preparation of Magnesium Oxide Nanoparticles by Solvent Displacement Drying Method, Sea-lake Salt and Chemical Industry, Vol.35, No.4, pp.13-16, 2006.
[24] Grossman, G., Michelson, E., A Modular Computer Simulation of Absorption Systems, ASHRAE Trans., Vol.91 Part 2B, pp.1808-1827, 1985.
[25] Grossman, G., Gommed, K., A Computer Model for Simulation of Absorption Systems in Flexible and Modular Form, ASHRAE Trans., Vol.93 Part 2, pp.2389-2427, 1987.
[26] Cosenza, F., Absorption in Falling Water/LiBr Films on Horizontal Tubes, ASHRAE Trans., Vol.96 Part 1, pp.693-701, 1990.
[27] Matsuda, A., Choi, K. H., Hada, K., Kawamura, T., Effect of pressure and concentration on performance of a vertical falling-film type of absorber and generator using lithium bromide aqueous solutions, International Journal of Refrigeration, Vol.17, No.8, pp.538-542, 1994.
[28] Kim, K. J., Berman, N. S., Chau, D. S. C., Wood, B. D., Absorption of water vapor into falling films of aqueous lithium bromide, International Journal of Refrigeration, Vol.18, No.7, pp.486-494, 1995.
[29] 工研院能資所吸收式冰水機研究篇,溴化鋰溶液在水平管上的薄膜吸收研究,吸收式冷凍空調技術專輯[紀念李崇江博士],中華民國冷凍空調協會,pp.236-241,1999。
[30] Deng, S. M., Ma, W. B., Experimental on the characteristics of an absorber using LiBr/H2O solution as working fluid, International Journal of Refrigeration, Vol.22, pp.293-301, 1999.
[31] Ren, Z. Y., Jiang, C. Y., Chen, Y. G., Experimental Study on the Influences of the Lithium-bromide’s Spray Amount on the System’s Performance, Refrigeration Air Conditioning & Electric Power Machinery, Vol.26, No.5, pp.14-18, 2005.
[32] Kyung, I., Herold, K. E., Performance of Horizontal Smooth Tube Absorber With and Without 2-Ethyl-Hexanol, Journal of Heat Transfer, Vol.124, pp.177-183, 2002.
[33] Park, C. W., Cho, H. C., Kang, Y. T., The effect of heat transfer additive and surface roughness of micro-scale hatched tubes on absorption performance, International Journal of Refrigeration, Vol.27, pp.264-270, 2004.
[34] 郭儒家,吸收式熱泵之種類及其原理,吸收式冷凍空調技術專輯[紀念李崇江博士],中華民國冷凍空調協會,pp.1-6,Dec. 1999。
[35] Grossman, G., Childs, K. W., Computer Simulation of a Lithium Bromide-Water Absorption Heat Pump for Temperature Boosting, ASHRAE Trans., Vol.89 Part 1B, pp.240-248, 1983.
[36] Grossman, G., Michelson, E., A Modular Computer Simulation of Absorption Systems”, ASHRAE Trans., Vol.91 Part 2B, pp.1808-1827, 1985.
[37] Grossman, G., Modular Simulation of Absorption Systems User’s Guide and Reference ABSIM windows version 5.0, Oak Ridge National Laboratory (ORNL), Tennessee, 1998.
[38] 工研院能資所,溴化鋰溶液的性質,吸收式冷凍空調技術專輯[紀念李崇江博士],中華民國冷凍空調協會,pp.14-23,Dec. 1999。
[39] Ellington, R. T., The Absorption Cooling Process, Institute of Gas Technology, Chicago, 1957.
[40] 李崇江、林佩芝,吸收式冰水機之腐蝕問題及防制對策,吸收式冷凍空調技術專輯[紀念李崇江博士],中華民國冷凍空調協會,pp.107-114,Dec. 1999。