| 研究生: |
賴易鋒 Lai, Yi-Feng |
|---|---|
| 論文名稱: |
非極性及摻銦氧化鋅結構之成長及物理性質之研究 Growth and Physical Properties of Nonpolar ZnO and In-doped ZnO Structures |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 傾斜角沉積技術 、非極性ZnO 、homologous In2O3(ZnO)m 、In佈值ZnO 、異質接面結構 |
| 外文關鍵詞: | nonpolar ZnO, oblique-angle deposition, homologous In2O3(ZnO)m, In-doped ZnO, heterojunction belt |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分成兩個部份討論。在第一部分的研究當中,我們成功的利用一階段傾斜角沉積技術在康寧7059玻璃基板上沉積出非極性ZnO薄膜。SEM結果顯示薄膜表面由長1-2 um,寬200-600 nm的橫向ZnO柱狀結構所組成。TEM橫截面影像及擇區電子繞射結果顯示,薄膜是由許多晶粒從玻璃基板開始堆疊向上發展,隨著成長厚度的增加,[0002]方向晶軸也從原本垂直基板表面逐漸轉向,最後呈現近乎平行基板的狀態。(0002)面極圖分佈隨著傾斜角改變呈現漸進式變化,在傾斜角 = 18°方位角 = 0°時發現有高密度極點分佈。(10-10)極點呈現豆莢狀分布,主要訊號集中在傾斜角 = 3°和30°及方位角 = 90° / 270°處。變角度X光近緣吸收光譜技術結果可以得知ZnO表面柱狀結構具高晶體優選方向性,其局部電子結構也呈現很強的異向性。由極化拉曼光譜結果可知,當極化條件為X(Z,Z)-X時,以378 cm-1 A1 (TO)訊號峰為主,當極化條件為X(Y,Y)-X時,則是438 cm-1 E2 (high) 訊號峰主導。此成長機制可以容易的應用在其他如GaN半導體材料的製備上,且因為無基板選擇性的限制,對於未來在非極性發光元件的發展上無疑是一大優勢。
在第二部分的研究當中,我們利用合金蒸鍍的方式製作出同時包含homologous In2O3(ZnO)m及高In濃度佈值ZnO(In:ZnO)的單一異質接面結構,此結構同時產生強侷限發光特性及高的熱電功率因數。能量過濾二次電子影像呈現了一個特殊明暗對比的層狀結構,與TEM結果互相參照可以得知此異質接面結構在短軸方向為In2O3(ZnO)m / In:ZnO / ZnO / In:ZnO / In2O3(ZnO)m等5層結構排列而成。由CL單光影像結果來看,透過能帶的接合,In:ZnO區域形成類量子井結構侷限電子,產生波長385nm紫外光發光訊號。特別的是,此獨特異質接面結構中,藉由In:ZnO層提供了一個理想的電子傳輸通道提高導電率,且homologous In2O3(ZnO)m層中大量的界面形成多重散射阻礙聲子的傳輸,使其在室溫下具有優異的熱電power factor 為2 x 10−4 Wm-1K-2,高於一般純ZnO奈米線所量到的1.03 x 10−5 Wm-1K-2一個數量級。此次研究展示了一個新的結構概念,藉由組合摻雜層與同源結構到單一結構上,可以將電子與聲子的傳輸路徑分離,使半導體元件同時具有良好的發光及熱電特性。
Non-polar ZnO thin film with high crystal quality is grown on a glass substrate using one-step oblique-angle deposition. Cross-sectional transmission electron microscopy images and selected area electron diffraction patterns reveal that the film is constructed as a stack of grains from the bottom to the top with the [0002] axis gradually titled from a vertical to a horizontal orientation with respect to the substrate. In the second part, we demonstrate the viability of a coupled structure of homologous In2O3(ZnO)m with In-doped ZnO into heterojunction belts synthesized by alloy-evaporation deposition. Energy-filter secondary electron images reveal a five-layer contrast in the width direction corresponding to In2O3(ZnO)m / In:ZnO / ZnO / In:ZnO / In2O3(ZnO)m, as confirmed by transmission electron microscopy analysis. The In:ZnO channels behave like quantum wells through band alignment. This novel heterostructure provides an ideal pathway to enhance electron conduction through the In:ZnO layer, while the homologous In2O3(ZnO)m layer contains numerous interfaces to impede phonon transportation. In this way, the power factor of the heterostructure is greatly enhanced to be 2.07×10−4 Wm-1K-2 at room temperature.
[1] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, pp. 12727-12731, 05/15/ 1993.
[2] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, vol. 47, pp. 16631-16634, 06/15/ 1993.
[3] R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, and N. El-Masry, "MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications," Journal of Crystal Growth, vol. 170, pp. 817-821, 1/1/ 1997.
[4] R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Physical Review B, vol. 61, pp. 3091-3097, 01/15/ 2000.
[5] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou, "Nitride-based light emitting diodes with textured sidewalls and pillar waveguides," Ieee Photonics Technology Letters, vol. 18, pp. 2517-2519, Nov-Dec 2006.
[6] M.-K. Lee and K.-K. Kuo, "Single-step fabrication of Fresnel microlens array on sapphire substrate of flip-chip gallium nitride light emitting diode by focused ion beam," Applied Physics Letters, vol. 91, pp. -, 2007.
[7] T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, "Piezoelectric effect in group-III nitride-based heterostructures and quantum wells," in III-V Nitride Semiconductors Applications and Devices, E. T. Tu and M. O. Manasreh, Eds., New York: Taylor & Francis, pp. 414-426, 2003.
[8] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology, vol. 20, pp. S35-S44, Apr 2005.
[9] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
[10] B. Meyer and D. Marx, "Density-functional study of the structure and stability of ZnO surfaces," Physical Review B, vol. 67, p. 035403, 01/09/ 2003.
[11] A. Kobayashi, O. F. Sankey, and J. D. Dow, "Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO," Physical Review B, vol. 28, pp. 946-956, 07/15/ 1983.
[12] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructures, vol. 34, pp. 3-32, 7// 2003.
[13] M. D. McCluskey and S. J. Jokela, "Defects in ZnO," Journal of Applied Physics, vol. 106, p. 071101, 2009.
[14] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, "First-principles study of native point defects in ZnO," Physical Review B, vol. 61, pp. 15019-15027, 06/01/ 2000.
[15] F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, "The Oxygen Vacancy as the Origin of a Green Emission in Undoped ZnO," physica status solidi (b), vol. 226, pp. R4-R5, 2001.
[16] W. E. Carlos, E. R. Glaser, and D. C. Look, "Magnetic resonance studies of ZnO," Physica B: Condensed Matter, vol. 308–310, pp. 976-979, 12// 2001.
[17] F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, "Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO," Physical Review Letters, vol. 91, p. 205502, 11/10/ 2003.
[18] C. G. Van de Walle, "Hydrogen as a Cause of Doping in Zinc Oxide," Physical Review Letters, vol. 85, pp. 1012-1015, 07/31/ 2000.
[19] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, "Hydrogen: A Relevant Shallow Donor in Zinc Oxide," Physical Review Letters, vol. 88, p. 045504, 01/10/ 2002.
[20] Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, and M. Morinaga, "Effects of hydrogen doping through ion implantation on the electrical conductivity of ZnO," International Journal of Hydrogen Energy, vol. 29, pp. 323-327, 3// 2004.
[21] D. C. Look, C. Coşkun, B. Claflin, and G. C. Farlow, "Electrical and optical properties of defects and impurities in ZnO," Physica B: Condensed Matter, vol. 340–342, pp. 32-38, 12/31/ 2003.
[22] F. Bernardini, "Spontaneous and Piezoelectric Polarization: Basic Theory vs. Practical Recipes," in Nitride Semiconductor Devices: Principles and Simulation, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 49-68.
[23] W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of Crystal Growth, vol. 203, pp. 186-196, 5// 1999.
[24] Y. S. Gu, J. J. Qi, and Y. Zhang, "Surface Energy of In-Doped ZnO Studied by PAW+U Method," Materials Science Forum, vol. 561-565, pp. 1861-1864, 2007.
[25] T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, "Radiative recombination of electron-hole pairs spatially separated due to quantum-confined Stark and Franz-Keldish effects in ZnO/Mg0.27Zn0.73O quantum wells," Applied Physics Letters, vol. 81, pp. 2355-2357, Sep 2002.
[26] C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis, "Internal electric field in wurtzite ZnO/Zn0.78Mg0.22O quantum wells," Physical Review B, vol. 72, p. 241305, Dec 2005.
[27] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature, vol. 406, pp. 865-868, 08/24/print 2000.
[28] K. Aniruddha, V. Amit, F. Tian, Z. Pei, J. Raj, and J. Debdeep, "Charge transport in non-polar and semi-polar III-V nitride heterostructures," Semiconductor Science and Technology, vol. 27, p. 024018, 2012.
[29] M. M. C. Chou, L. Chang, H.-Y. Chung, T.-H. Huang, J.-J. Wu, and C.-W. Chen, "Growth and characterization of nonpolar ZnO (10-10) epitaxial film on gamma-LiAlO2 substrate by chemical vapor deposition," Journal of Crystal Growth, vol. 308, pp. 412-416, Oct 15 2007.
[30] S. Zhou, J. Zhou, T. Huang, S. Li, J. Zou, J. Wang, X. Zhang, X. Li, and R. Zhang, "Nonpolar a-plane ZnO films fabricated on (302)gamma-LiAlO2 by pulsed laser deposition," Journal of Crystal Growth, vol. 303, pp. 510-514, May 15 2007.
[31] H. Lin, S. Zhou, J. Zhou, X. Liu, S. Gu, S. Zhu, Z. Xie, P. Han, and R. Zhang, "Structural and optical properties of a-plane ZnO thin films synthesized on gamma-LiAlO2 (302) substrates by low pressure metal-organic chemical vapor deposition," Thin Solid Films, vol. 516, pp. 6079-6082, Jul 31 2008.
[32] Y. C. Liang, "Growth and characterization of nonpolar a-plane ZnO films on perovskite oxides with thin homointerlayer," Journal of Alloys and Compounds, vol. 508, pp. 158-161, Oct 15 2010.
[33] J. S. Tian, M. H. Liang, Y. T. Ho, Y. A. Liu, and L. Chang, "Growth of a-plane ZnO thin films on LaAlO3(100) substrate by metal-organic chemical vapor deposition," Journal of Crystal Growth, vol. 310, pp. 777-782, Feb 2008.
[34] Y. T. Ho, W. L. Wang, C. Y. Peng, M. H. Liang, J. S. Tian, C. W. Lin, and L. Chang, "Growth of nonpolar (11-20) ZnO films on LaAlO3 (001) substrates," Applied Physics Letters, vol. 93, p. 121911, Sep 2008.
[35] M. M. C. Chou, D. R. Hang, C. L. Chen, and Y. H. Liao, "Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates," Thin Solid Films, vol. 519, pp. 3627-3631, Mar 31 2011.
[36] M. M. C. Chou, D. R. Hang, S. C. Wang, C. L. Chen, and C. Y. Lee, "Growth and characterizations of nonpolar [11-20] ZnO on [100] (La,Sr)(Al,Ta)O-3 substrate by chemical vapor deposition," Journal of Crystal Growth, vol. 312, pp. 1170-1174, Apr 1 2010.
[37] T. Moriyama and S. Fujita, "Growth behavior of nonpolar ZnO on M-plane and R-plane sapphire by metalorganic vapor phase epitaxy," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 44, pp. 7919-7921, Nov 2005.
[38] J. Zuniga-Perez, V. Munoz-Sanjose, E. Palacios-Lidon, and J. Colchero, "Facets evolution and surface electrical properties of nonpolar m-plane ZnO thin films," Applied Physics Letters, vol. 88, p. 261912, Jun 26 2006.
[39] J. W. Lee, S. K. Han, S. K. Hong, J. Y. Lee, and T. Yao, "Characterization of microstructure and defects in epitaxial ZnO (11-20) films on Al(2)O(3) (1-102) substrates by transmission electron microscopy," Journal of Crystal Growth, vol. 310, pp. 4102-4109, Aug 2008.
[40] S. K. Han, J. H. Kim, S. K. Hong, J. H. Song, J. H. Song, J. W. Lee, J. Y. Lee, S. I. Hong, and T. Yao, "Investigation of nonpolar (11-20) a-plane ZnO films grown under various Zn/O ratios by plasma-assisted molecular beam epitaxy," Journal of Crystal Growth, vol. 312, pp. 2196-2200, Jul 15 2010.
[41] P. Pant, J. D. Budai, and J. Narayan, "Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation," Acta Materialia, vol. 58, pp. 1097-1103, Feb 2010.
[42] J. J. Chen, H. Deng, N. Li, Y. L. Tian, and H. Ji, "Realization of nonpolar a-plane ZnO films on r-plane sapphire substrates using a simple single-source chemical vapor deposition," Materials Letters, vol. 65, pp. 716-718, Feb 28 2011.
[43] J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, "Interface and defect structures in ZnO films on m-plane sapphire substrates," Journal of Crystal Growth, vol. 312, pp. 238-244, 1/1/ 2010.
[44] 黃俊翰, "以複合製程成長氧化鋅奈米元件," 國立成功大學材料科學及工程學系,博士論文, 2011.
[45] D. O. Smith, "Anisotropy in Permalloy Films," Journal of Applied Physics, vol. 30, pp. S264-S265, 1959.
[46] T. G. Knorr and R. W. Hoffman, "Dependence of Geometric Magnetic Anisotropy in Thin Iron Films," Physical Review, vol. 113, pp. 1039-1046, 02/15/ 1959.
[47] A. G. Dirks and H. J. Leamy, "Columnar microstructure in vapor-deposited thin films," Thin Solid Films, vol. 47, pp. 219-233, 12/15/ 1977.
[48] S. Lichter and J. Chen, "Model for Columnar Microstructure of Thin Solid Films," Physical Review Letters, vol. 56, pp. 1396-1399, 03/31/ 1986.
[49] H. v. Kranenburg, "Obliquely co-evaporated thin films for magnetic recording," University of Twente, Enschede, 1992.
[50] N. V. Pleshivtsev, "Cathode Sputtering," Atomizdat, Moscow, 1968.
[51] L. I. Maissel and R. Glang, Handbook of thin film technology: McGraw-Hill, 1970.
[52] S. Müller-Pfeiffer, H. van Kranenburg, and J. C. Lodder, "A two-dimensional Monte Carlo model for thin film growth by oblique evaporation: simulation of two-component systems for the example of CoCr," Thin Solid Films, vol. 213, pp. 143-153, 5/29/ 1992.
[53] http://en.wikipedia.org/wiki/Raman_spectroscopy.
[54] W. Hayes and R. Loudon, Scattering of Light by Crystals: Dover Publications, 2012.
[55] L. Bergman, X.-B. Chen, J. Huso, J. L. Morrison, and H. Hoeck, "Raman scattering of polar modes of ZnO crystallites," Journal of Applied Physics, vol. 98, pp. -, 2005.
[56] C. L. Hsiao, L. W. Tu, T. W. Chi, M. Chen, T. F. Young, C. T. Chia, and Y. M. Chang, "Micro-Raman spectroscopy of a single freestanding GaN nanorod grown by molecular beam epitaxy," Applied Physics Letters, vol. 90, p. 043102, Jan 22 2007.
[57] N. Tokio, O. Yukiyasu, M. Naoki, and K. Akio, "Transparent Conducting Boron-Doped Zinc Oxide Films Deposited by DC-Magnetron Sputtering in B 2 H 6 - A r Mixtures," Japanese Journal of Applied Physics, vol. 34, p. 3623, 1995.
[58] B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, "Band-gap tailoring of ZnO by means of heavy Al doping," Physical Review B, vol. 37, pp. 10244-10248, 06/15/ 1988.
[59] J. Han, P. Q. Mantas, and A. M. R. Senos, "Effect of Al and Mn doping on the electrical conductivity of ZnO," Journal of the European Ceramic Society, vol. 21, pp. 1883-1886, // 2001.
[60] S. Takeda and M. Fukawa, "Highly stable hydrogenated gallium-doped zinc oxide thin films grown by DC magnetron sputtering using H2/Ar gas," Thin Solid Films, vol. 468, pp. 234-239, 12/1/ 2004.
[61] K. Tominaga, T. Takao, A. Fukushima, T. Moriga, and I. Nakabayashi, "Amorphous ZnO–In2O3 transparent conductive films by simultaneous sputtering method of ZnO and In2O3 targets," Vacuum, vol. 66, pp. 505-509, 8/19/ 2002.
[62] T. Y. Ma and D. K. Shim, "Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films," Thin Solid Films, vol. 410, pp. 8-13, 5/1/ 2002.
[63] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, "Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy," Applied Physics Letters, vol. 77, pp. 3761-3763, 2000.
[64] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, "Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition," Thin Solid Films, vol. 445, pp. 263-267, 12/15/ 2003.
[65] S. S. Shinde, P. S. Shinde, C. H. Bhosale, and K. Y. Rajpure, "Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films," Journal of Physics D: Applied Physics, vol. 41, p. 105109, 2008.
[66] S. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, and B. H. Zhao, "p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes," Solid State Communications, vol. 148, pp. 25-28, 10// 2008.
[67] W. Jun and Y. Yintang, "Deposition of K-doped p type ZnO thin films on (0001) Al2O3 substrates," Materials Letters, vol. 62, pp. 1899-1901, 4/30/ 2008.
[68] Y. Yan, S. B. Zhang, and S. T. Pantelides, "Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO," Physical Review Letters, vol. 86, pp. 5723-5726, 06/18/ 2001.
[69] T. M. Barnes, K. Olson, and C. A. Wolden, "On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide," Applied Physics Letters, vol. 86, pp. -, 2005.
[70] Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, and D. P. Norton, "p-type behavior in phosphorus-doped (Zn,Mg)O device structures," Applied Physics Letters, vol. 84, pp. 3474-3476, 2004.
[71] J. C. Fan, C. Y. Zhu, S. Fung, Y. C. Zhong, K. S. Wong, Z. Xie, G. Brauer, W. Anwand, W. Skorupa, C. K. To, B. Yang, C. D. Beling, and C. C. Ling, "Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering," Journal of Applied Physics, vol. 106, pp. -, 2009.
[72] T. Yamamoto and H. Katayama-Yoshida, "Physics and control of valence states in ZnO by codoping method," Physica B: Condensed Matter, vol. 302–303, pp. 155-162, // 2001.
[73] J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, "p-type conduction in N–Al co-doped ZnO thin films," Applied Physics Letters, vol. 85, pp. 3134-3135, 2004.
[74] W. Lim, Y.-L. Wang, F. Ren, D. P. Norton, I. I. Kravchenko, J. M. Zavada, and S. J. Pearton, "Room-Temperature-Deposited Indium-Zinc Oxide Thin Films with Controlled Conductivity," Electrochemical and Solid-State Letters, vol. 10, pp. H267-H269, September 1, 2007 2007.
[75] Y. S. Rim, D. H. Kim, and K. H. Kim, "Preparation of Indium Zinc Oxide Thin Films Deposited on Various Substrates," Molecular Crystals and Liquid Crystals, vol. 514, pp. 99/[429]-108/[438], 2009/11/11 2009.
[76] P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, and R. Martins, "Effect of different dopant elements on the properties of ZnO thin films," Vacuum, vol. 64, pp. 281-285, 1// 2002.
[77] H.-K. Kim, K.-S. Lee, and J. H. Kwon, "Transparent indium zinc oxide top cathode prepared by plasma damage-free sputtering for top-emitting organic light-emitting diodes," Applied Physics Letters, vol. 88, pp. -, 2006.
[78] L. M. Li, C. C. Li, J. Zhang, Z. F. Du, B. S. Zou, H. C. Yu, Y. G. Wang, and T. H. Wang, "Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires," Nanotechnology, vol. 18, p. 225504, 2007.
[79] K. W. Liu, M. Sakurai, and M. Aono, "Indium-doped ZnO nanowires: Optical properties and room-temperature ferromagnetism," Journal of Applied Physics, vol. 108, pp. -, 2010.
[80] S. Lin, Z. Ye, H. He, Y. Zeng, H. Tang, B. Zhao, and L. Zhu, "Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorods array," Journal of Crystal Growth, vol. 306, pp. 339-343, 8/15/ 2007.
[81] H. J. Fan, B. Fuhrmann, R. Scholz, C. Himcinschi, A. Berger, H. Leipner, A. Dadgar, A. Krost, S. Christiansen, U. Gosele, and M. Zacharias, "Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping," Nanotechnology, vol. 17, pp. S231-S239, Jun 2006.
[82] A. Mashkoor, Z. Jiong, I. Javed, M. Wei, X. Lin, M. Rigen, and Z. Jing, "Conductivity enhancement by slight indium doping in ZnO nanowires for optoelectronic applications," Journal of Physics D: Applied Physics, vol. 42, p. 165406, 2009.
[83] J. Su, H. Li, Y. Huang, X. Xing, J. Zhao, and Y. Zhang, "Electronic transport properties of In-doped ZnO nanobelts with different concentration," Nanoscale, vol. 3, pp. 2182-2187, 2011.
[84] N. Kimizuka and E. Takayama, "Ln(Fe3+M2+)O4 compounds with layer structure [Ln : Y, Er, Tm, Yb, and Lu, M : Mg, Mn, Co, Cu, and Zn]," Journal of Solid State Chemistry, vol. 40, pp. 109-116, 11/1/ 1981.
[85] J. L. F. Da Silva, Y. Yan, and S.-H. Wei, "Rules of Structure Formation for the Homologous InMO3(ZnO)n Compounds," Physical Review Letters, vol. 100, p. 255501, 06/24/ 2008.
[86] V. H. Kasper, "Neuartige phasen mit wurtzitдhnlichen strukturen im system ZnO-In2O3," Z. Anorg. Allg. Chem., vol. 349, pp. 113-123, 1967.
[87] P. J. Cannard and R. J. D. Tilley, "New intergrowth phases in the ZnO-In2O3 system," Journal of Solid State Chemistry, vol. 73, pp. 418-426, 4// 1988.
[88] N. Kimizuka, M. Isobe, and M. Nakamura, "Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m = 3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m = 7, 8, 9, and 16) in the In2O3-ZnGa2O4-ZnO System," Journal of Solid State Chemistry, vol. 116, pp. 170-178, 4// 1995.
[89] M. Isobe, N. Kimizuka, M. Nakamura, and T. Mohri, "Structures of LuFeO3(ZnO)m (m =1, 4, 5 and 6)," Acta Crystallographica Section C, vol. 50, pp. 332-336, 1994.
[90] Y. Yan, S. J. Pennycook, J. Dai, R. P. H. Chang, A. Wang, and T. J. Marks, "Polytypoid structures in annealed In2O3–ZnO films," Applied Physics Letters, vol. 73, pp. 2585-2587, 1998.
[91] Y. Yan, J. L. F. Da Silva, S.-H. Wei, and M. Al-Jassim, "Atomic structure of In2O3–ZnO systems," Applied Physics Letters, vol. 90, pp. -, 2007.
[92] F. J. DiSalvo, "Thermoelectric Cooling and Power Generation," Science, vol. 285, pp. 703-706, July 30, 1999 1999.
[93] A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics and Materials," Annual Review of Materials Research, vol. 41, pp. 399-431, 2011.
[94] M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, "Electronic Transport in Semimetallic Cerium Sulfide," Physical Review, vol. 133, pp. A1143-A1152, 02/17/ 1964.
[95] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano: Taylor & Francis, 2005.
[96] Richman.R, "Prospects for efficient thermoelectric materials in the near term," presented at the DARPA/DOE High Efficient Thermoelectric Workshop, San Diego, 2002.
[97] J. J. a. T. R. J. Anaya, "Nanowires - Recent Advances, InTech," 2012.
[98] J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids: OUP Oxford, 2001.
[99] M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, and D. Poulikakos, "Significant Reduction of Thermal Conductivity in Si/Ge Core−Shell Nanowires," Nano Letters, vol. 11, pp. 618-623, 2011/02/09 2010.
[100] http://www.hitachi-hitec.com/global/index.html.
[101] D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science: Springer, 2009.
[102] http://www.bruker.com/.
[103] http://www.ebsd.com/popup/polefigure.htm.
[104] http://www-ssrl.slac.stanford.edu/nexafs.html.
[105] B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids: Springer, 1990.
[106] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nature Materials, vol. 4, pp. 42-46, Jan 2005.
[107] T. Aoki, Y. Hatanaka, and D. C. Look, "ZnO diode fabricated by excimer-laser doping," Applied Physics Letters, vol. 76, pp. 3257-3258, May 29 2000.
[108] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, "Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films," Applied Physics Letters, vol. 78, pp. 2285-2287, Apr 2001.
[109] B. P. Zhang, B. L. Liu, J. Z. Yu, Q. M. Wang, C. Y. Liu, Y. C. Liu, and Y. Segawa, "Photoluminescence and built-in electric field in ZnO/Mg0.1Zn0.9O quantum wells," Applied Physics Letters, vol. 90, p. 132113, Mar 2007.
[110] J. Zuniga-Perez, V. Munoz-Sanjose, E. Palacios-Lidon, and J. Colchero, "Polarity effects on ZnO films grown along the nonpolar 11(2)over-bar0 direction," Physical Review Letters, vol. 95, p. 226105, Nov 2005.
[111] J. H. Huang, C. Y. Chen, Y. F. Lai, Y. I. Shih, Y. C. Lin, J. H. He, and C. P. Liu, "Large-Area Oblique-Aligned ZnO Nanowires through a Continuously Bent Columnar Buffer: Growth, Microstructure, and Antireflection," Crystal Growth & Design, vol. 10, pp. 3297-3301, Aug 2010.
[112] S. Hayamizu, H. Tabata, H. Tanaka, and T. Kawai, "Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition," Journal of Applied Physics, vol. 80, pp. 787-791, Jul 15 1996.
[113] J. H. Guo, L. Vayssieres, C. Persson, R. Ahuja, B. Johansson, and J. Nordgren, "Polarization-dependent soft-x-ray absorption of highly oriented ZnO microrod arrays," Journal of Physics-Condensed Matter, vol. 14, pp. 6969-6974, Jul 22 2002.
[114] J. W. Chiou, C. L. Yueh, J. C. Jan, H. M. Tsai, W. F. Pong, I. H. Hong, R. Klauser, M. H. Tsai, Y. K. Chang, Y. Y. Chen, C. T. Wu, K. H. Chen, S. L. Wei, C. Y. Wen, L. C. Chen, and T. J. Chuang, "Electronic structure of the carbon nanotube tips studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy," Applied Physics Letters, vol. 81, pp. 4189-4191, Nov 25 2002.
[115] J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, "Electronic structure of ZnO nanorods studied by angle-dependent x-ray absorption spectroscopy and scanning photoelectron microscopy," Applied Physics Letters, vol. 84, pp. 3462-3464, May 3 2004.
[116] C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, "Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod," Applied Physics Letters, vol. 92, p. 223102, Jun 2 2008.
[117] F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, "Silent Raman modes in zinc oxide and related nitrides," Journal of Applied Physics, vol. 97, p. 053516, Mar 1 2005.
[118] C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, "First-Order Raman Effect in Wurtzite-Type Crystals," Physical Review, vol. 181, pp. 1351-1363, 1969.
[119] S. C. Minne, S. R. Manalis, A. Atalar, and C. F. Quate, "Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor," Applied Physics Letters, vol. 68, pp. 1427-1429, Mar 1996.
[120] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, "Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films," Advanced Functional Materials, vol. 13, pp. 811-814, Oct 2003.
[121] S. J. Chen, Y. C. Liu, C. L. Shao, R. Mu, Y. M. Lu, J. Y. Zhang, D. Z. Shen, and X. W. Fan, "Structural and optical properties of uniform ZnO nanosheets," Advanced Materials, vol. 17, pp. 586-590, Mar 2005.
[122] Q. Y. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, and M. Grundmann, "Metal-insulator transition in co-doped ZnO: Magnetotransport properties," Physical Review B, vol. 73, p. 205342, May 2006.
[123] K. J. Kim and Y. R. Park, "Large and abrupt optical band gap variation in In-doped ZnO," Applied Physics Letters, vol. 78, pp. 475-477, Jan 2001.
[124] S. B. Zhang, S. H. Wei, and A. Zunger, "Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO," Physical Review B, vol. 63, p. 075205, Feb 2001.
[125] S. C. Andrews, M. A. Fardy, M. C. Moore, S. Aloni, M. J. Zhang, V. Radmilovic, and P. D. Yang, "Atomic-level control of the thermoelectric properties in polytypoid nanowires," Chemical Science, vol. 2, pp. 706-714, 2011.
[126] P. Kazemian, S. A. M. Mentink, C. Rodenburg, and C. J. Humphreys, "High resolution quantitative two-dimensional dopant mapping using energy-filtered secondary electron imaging," Journal of Applied Physics, vol. 100, p. 054901, Sep 2006.
[127] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, and J. G. Hou, "Indium-doped zinc oxide nanobelts," Chemical Physics Letters, vol. 387, pp. 466-470, 4/1/ 2004.
[128] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," Journal of Applied Physics, vol. 79, pp. 7983-7990, May 1996.
[129] A. Shih, J. Yater, C. Hor, and R. Abrams, "Secondary electron emission studies," Applied Surface Science, vol. 111, pp. 251-258, // 1997.
[130] A. A. Suvorova and S. Samarin, "Secondary electron imaging of SiC-based structures in secondary electron microscope," Surface Science, vol. 601, pp. 4428-4432, 9/15/ 2007.
[131] A. P. Roth, J. B. Webb, and D. F. Williams, "Band-gap narrowing in heavily defect-doped ZnO," Physical Review B, vol. 25, pp. 7836-7839, 06/15/ 1982.
[132] N. F. Mott, Metal-insulator transitions, 2nd ed. London ; New York: Taylor & Francis, 1990.
[133] C. H. Lee, G. C. Yi, Y. M. Zuev, and P. Kim, "Thermoelectric power measurements of wide band gap semiconducting nanowires," Applied Physics Letters, vol. 94, Jan 2009.
[134] S. H. Lee, W. Shim, S. Y. Jang, J. W. Roh, P. Kim, J. Park, and W. Lee, "Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method," Nanotechnology, vol. 22, Jul 2011.
[135] Y. Yang, K. C. Pradel, Q. S. Jing, J. M. Wu, F. Zhang, Y. S. Zhou, Y. Zhang, and Z. L. Wang, "Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts," Acs Nano, vol. 6, pp. 6984-6989, Aug 2012.
校內:2019-08-29公開