簡易檢索 / 詳目顯示

研究生: 賴易鋒
Lai, Yi-Feng
論文名稱: 非極性及摻銦氧化鋅結構之成長及物理性質之研究
Growth and Physical Properties of Nonpolar ZnO and In-doped ZnO Structures
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 109
中文關鍵詞: 傾斜角沉積技術非極性ZnOhomologous In2O3(ZnO)mIn佈值ZnO異質接面結構
外文關鍵詞: nonpolar ZnO, oblique-angle deposition, homologous In2O3(ZnO)m, In-doped ZnO, heterojunction belt
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成兩個部份討論。在第一部分的研究當中,我們成功的利用一階段傾斜角沉積技術在康寧7059玻璃基板上沉積出非極性ZnO薄膜。SEM結果顯示薄膜表面由長1-2 um,寬200-600 nm的橫向ZnO柱狀結構所組成。TEM橫截面影像及擇區電子繞射結果顯示,薄膜是由許多晶粒從玻璃基板開始堆疊向上發展,隨著成長厚度的增加,[0002]方向晶軸也從原本垂直基板表面逐漸轉向,最後呈現近乎平行基板的狀態。(0002)面極圖分佈隨著傾斜角改變呈現漸進式變化,在傾斜角 = 18°方位角 = 0°時發現有高密度極點分佈。(10-10)極點呈現豆莢狀分布,主要訊號集中在傾斜角 = 3°和30°及方位角 = 90° / 270°處。變角度X光近緣吸收光譜技術結果可以得知ZnO表面柱狀結構具高晶體優選方向性,其局部電子結構也呈現很強的異向性。由極化拉曼光譜結果可知,當極化條件為X(Z,Z)-X時,以378 cm-1 A1 (TO)訊號峰為主,當極化條件為X(Y,Y)-X時,則是438 cm-1 E2 (high) 訊號峰主導。此成長機制可以容易的應用在其他如GaN半導體材料的製備上,且因為無基板選擇性的限制,對於未來在非極性發光元件的發展上無疑是一大優勢。
    在第二部分的研究當中,我們利用合金蒸鍍的方式製作出同時包含homologous In2O3(ZnO)m及高In濃度佈值ZnO(In:ZnO)的單一異質接面結構,此結構同時產生強侷限發光特性及高的熱電功率因數。能量過濾二次電子影像呈現了一個特殊明暗對比的層狀結構,與TEM結果互相參照可以得知此異質接面結構在短軸方向為In2O3(ZnO)m / In:ZnO / ZnO / In:ZnO / In2O3(ZnO)m等5層結構排列而成。由CL單光影像結果來看,透過能帶的接合,In:ZnO區域形成類量子井結構侷限電子,產生波長385nm紫外光發光訊號。特別的是,此獨特異質接面結構中,藉由In:ZnO層提供了一個理想的電子傳輸通道提高導電率,且homologous In2O3(ZnO)m層中大量的界面形成多重散射阻礙聲子的傳輸,使其在室溫下具有優異的熱電power factor 為2 x 10−4 Wm-1K-2,高於一般純ZnO奈米線所量到的1.03 x 10−5 Wm-1K-2一個數量級。此次研究展示了一個新的結構概念,藉由組合摻雜層與同源結構到單一結構上,可以將電子與聲子的傳輸路徑分離,使半導體元件同時具有良好的發光及熱電特性。

    Non-polar ZnO thin film with high crystal quality is grown on a glass substrate using one-step oblique-angle deposition. Cross-sectional transmission electron microscopy images and selected area electron diffraction patterns reveal that the film is constructed as a stack of grains from the bottom to the top with the [0002] axis gradually titled from a vertical to a horizontal orientation with respect to the substrate. In the second part, we demonstrate the viability of a coupled structure of homologous In2O3(ZnO)m with In-doped ZnO into heterojunction belts synthesized by alloy-evaporation deposition. Energy-filter secondary electron images reveal a five-layer contrast in the width direction corresponding to In2O3(ZnO)m / In:ZnO / ZnO / In:ZnO / In2O3(ZnO)m, as confirmed by transmission electron microscopy analysis. The In:ZnO channels behave like quantum wells through band alignment. This novel heterostructure provides an ideal pathway to enhance electron conduction through the In:ZnO layer, while the homologous In2O3(ZnO)m layer contains numerous interfaces to impede phonon transportation. In this way, the power factor of the heterostructure is greatly enhanced to be 2.07×10−4 Wm-1K-2 at room temperature.

    總目錄 中文摘要 I 英文延伸摘要 III 誌謝 VII 總目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 研究目的與論文架構 3 第二章 理論基礎與文獻回顧 5 2-1 氧化鋅材料介紹 5 2-2 非極性氧化鋅 8 2-2.1 ZnO極化效應 8 2-2.2 非極性ZnO成長方式與基板 11 2-2.3 傾斜角製程 17 2-3 氧化鋅拉曼晶格震盪 21 2-4 氧化鋅的摻雜 25 2-4.1 氧化鋅摻雜銦 26 2-4.2 Homologous Compounds InMO3(ZnO)n 28 2-5 熱電原理 30 2-6 聲子散射機制 33 第三章 實驗步驟與分析儀器 36 3-1 非極性氧化鋅鍍膜製備 36 3-1.1 實驗流程 36 3-1.2 基板準備 37 3-1.3 傾斜角濺鍍系統(Oblique-Angle Sputtering System) 37 3-2 同源氧化銦鋅(homologous In2O3(ZnO)m)合併參雜銦氧化鋅(In:ZnO)異質接面結構製備 39 3-2.1 實驗流程 39 3-2.2 基板準備 40 3-2.3 化學氣相沉積法成長homologous In2O3(ZnO)m/ In:ZnO異質接面結構 40 3-3 微結構、成分及表面分析 42 3-3.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 42 3-3.2 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 44 3-4 織構極圖(pole figure)分析 46 3-5 電子結構分析 48 3-6 光學性質分析 49 3-6.1 陰極射線螢光(Cathodoluminescence, CL) 49 3-6.2 微觀拉曼光譜量測系統(micro-Raman Spectrometer,-Raman) 50 3-7 電性量測及元件製備 51 3-7.1 兩點及四點量測及元件製備 51 3-7.2 Seebeck係數量測及元件製備 53 第四章 利用傾斜角濺鍍技術製備大面積非極性氧化鋅鍍膜之研究 56 4-1 前言 56 4-2 尺寸、形貌與結構分析 57 4-3 晶體結構方向性 60 4-4 成長機制 60 4-5 織構分析 63 4-6 表面局部電子結構分析 65 4-7 表面晶體結構定向分析 67 4-8 結論 68 第五章 Homologous In2O3(ZnO)m / In:ZnO異質接面結構成分、光學、熱電功率因數變化之探討 70 5-1 前言 70 5-2 尺寸、形貌與巨觀元素分析 72 5-3 顯微結構、晶體結構及微觀元素分析 76 5-4 成長機制 80 5-5 發光特性分析 82 5-6 特殊發光行為及其機制分析 84 5-7 熱電功率因數(thermoelectric power factor)分析 87 5-8 結論 92 第六章 總結 93 第七章 未來研究方向 95 參考文獻 96 著作 108   表目錄 表2-1 ZnO基本性質 7 表3-1 傾斜角磁控濺鍍法法實驗參數 38 表3-2 化學氣相沉積法實驗參數 41   圖目錄 圖 2-1 ZnO 的三種晶體結構(a) Cubic rocksalt;(b)Cucbic zinc blend;(c)Hexagonal wurtzite 6 圖 2-2 Wurtzite結構的ZnO,a為[101 ̅0]方向的晶格常數;c為[0001]方向的晶格常數 6 圖 2-3 利用Semiempirical tight-binding modal所算出的能帶結構 7 圖 2-4 由(5nm GaN)/(10nm Al0.1Ga0.9N)量子井計算出的能帶結構,(a)由於[0001]方向內部極化電場做用,能帶產生傾斜(b) [11 ̅00]方向無極化電場作用,因此為平的能帶結構 10 圖 2-5 Wurtzite結構主要結晶面 10 圖 2-6 ZnO的m面與LiGaO2(100)面原子排列示意圖 13 圖 2-7 ZnO的a面與LiAlO2(302)面原子排列示意圖 13 圖 2-8 ZnO的a面與LiAlO2(100)面原子排列示意圖 14 圖 2-9 (a) m-plane ZnO/LAO橫截面TEM明視野圖(b) 結構接面處擇區電子束繞射結果(c) 高倍率TEM影像 14 圖 2-10 (a) a-plane ZnO與r-plane sapphire磊晶關係示意圖 (b) (11 ̅02) sapphire (c) (11 ̅02)ZnO原子排列示意圖 15 圖 2-11 (112 ̅0) ZnO與(11 ̅02) sapphire 介面處高解析TEM影像(a) [0001] zone axis成像(b) [1 ̅100]zone axis成像(c)及(d)分別為(a)與(b)經由傅立葉轉換過後之影像,箭頭處為差排存在位置 16 圖 2-12 (a)為[1 ̅21 ̅0]zone axis樣品橫截面高解析TEM影像 (b)圖(a)經由傅立葉轉過後所得影像(c) 由ZnO c軸方向(d) ZnO a軸方向所投影的m-plane ZnO / m-plane sapphire晶格相對關係示意圖 16 圖 2-13 氧化鋅傾斜柱狀晶掃描式電子顯微鏡影像,(a)分別(b)為成長於265oC兩小時之45°傾斜及俯視圖,(c)分別(d)成長於320oC兩小時之45°傾斜及俯視圖 18 圖 2-14 常見傾斜角沉積設備以及傾斜角成長結構簡圖 18 圖 2-15 圖 2-15 (a)粒子間互相遮蔽引起的微觀尺度遮蔽效應 (b)基板表面起伏所引起的遮蔽效應 20 圖 2-16結構傾斜角偏離入射束傾斜角成因:(a)遮蔽角度隨薄膜厚度改變 (b) 具有動能的沉積粒子抵達基板後延動能分量方向移動 20 圖 2-17 拉曼散射光能譜圖,分別對應不同訊號 23 圖 2-18 不同的晶粒取向對拉曼訊號的影響 23 圖 2-19 (a)變角度拉曼光譜分析GaN之結果(b)不同拉曼震盪模式對應於角度之強度變化分佈 24 圖 2-20 ZnO:In奈米緞帶結構成長機制示意圖 27 圖 2-21 不同In濃度的ZnO:In奈米緞帶結構I-V曲線 27 圖 2-22 In2O3(ZnO)n示意圖,其中綠色原子是In、紅色原子是O、藍色原子是Zn,(a) 當n<5時,In 原子將取代Zn形成inversion domain boudary(IDB), (b)當n >5時,In原子將形成zig-zag 調變結構 29 圖 2-23 簡易熱電偶示意圖 31 圖 2-24 Seebeck係數、導電率及熱傳導系數與材料之載子濃度關係圖 32 圖 2-25 熱電轉換效率和ZT值之關係 32 圖 2-26 (a)鏡面聲子散射 (b)擴散聲子散射 34 圖 2-27 Si/Ge核殼結構示意圖及區域熱能流動分布圖 35 圖 2-28 (a)Ge厚度對於Si/Ge整體結構熱傳影響(b)Ge厚度對於核區Si的熱傳影響 35 圖 3-1 實驗流程示意圖 36 圖 3-2 傾斜角濺鍍系統簡圖 38 圖 3-3 實驗流程示意圖 39 圖 3-4 化學氣象沉積法反應加熱裝置簡圖 40 圖 3-5 化學氣相沉積法反映溫度曲線 41 圖 3- 6 成大貴重儀器中心高解析掃描電子顯微鏡Hitachi SU-8000 43 圖 3- 7 Hitachi SU-8000訊號偵測器分區示意圖 43 圖 3- 8 TEM成像示意圖 45 圖 3-9 高角度暗視野成像(HAADF)示意圖 45 圖 3-10 嘉義大學應用物理系X光繞射分析儀Bruker D8 Discover 47 圖 3-11 材料特定晶面於於立體空間中投影關係示意圖 47 圖 3-12 電子溢出式X光近緣結構分析示意圖 48 圖 3-13 (a) CL裝置與訊號處理系統 (b)半橢圓形反射鏡增加CL收集之示意圖 49 圖 3-14 Micro-Raman (μ-Raman)光譜儀配置圖 50 圖 3-15 電性量測元件製程示意圖 (a) 電性晶片中心區域 (b) 將奈米線放至於電性晶片中央 (c) 利用電子束微影技術製作與奈米線接觸之金屬電極 52 圖 3-16 利用四點量測方式測量奈米線電阻率示意圖 52 圖 3-17 Seebeck 係數量測元件製程示意圖 (a) 電性晶片中心區域 (b) 將奈米線放至於電性晶片中央 (c) 製作與奈米線接觸之金屬電極,其可用來感測奈米線兩端金屬電阻值差異,以及感測奈米線兩端電壓變化 (d) 以第二段電子束微影製程製作微加熱器 54 圖 3-18 (a) 以Keithley 2400施加電流於微加熱器,而使用Keithley 2182A量測奈米線兩端之電壓差 (b) 以Keithley 2400施加電流於微加熱器,使用Keithley 2612 量測奈米線兩端金屬電阻值之變化 55 圖 4-1 SEM低倍率影像 (a) 非極性ZnO鍍膜成長於玻璃基板之SEM上視圖,白色箭頭為入射離子源方向投影 (b) 試片橫截面SEM影像,離子源入射方向與基板法線夾角及ZnO成長方向如圖 58 圖 4-2 (a) 非極性ZnO鍍膜成長於玻璃基板之橫截面TEM明視野影像 (b)-(i) 為擇區電子束繞射影像,其所對應的原始區域如圖 (a) 內所標記區域;圖中  為ZnO [0002]方向與基板法線之夾角,從 (b) 介面區域晶粒的17.7° 轉變為 (i) 表面晶粒的87.3°,由ZnO/玻璃介面往表面的晶粒c軸變化結果整合如圖 59 圖 4-3 ZnO在不同溫度下晶體傾斜彎曲狀況示意圖 62 圖 4-4 非極性ZnO鍍膜 (a, c) 為(0002)面及 (b, d) 為(101 ̅0)面之2D與3D極圖,(a) 與 (b) 圖中位於傾斜角30°之標記為入射離子束與基板法線向量相對應位置與夾角 64 圖 4-5 非極性ZnO鍍膜之變角度O K-edge X光近緣吸收光譜技術結果,右上角插圖為樣品量測示意圖 66 圖 4-6 (a) 為入射光/散射光與樣品結構相對應方位示意圖 (b) 在不同極化條件下常溫-拉曼分析結果 69 圖 5-1 (a) 樣品低倍率SEM影像 (b) 及 (c) 分別為奈米盤與帶狀結構高倍率SEM影像 74 圖 5-2 (a) 與 (b) 分別為In2O3(ZnO)m/In:ZnO/ZnO HB 結構利用下部(lower)和上部(upper)的偵測器紀錄結果;右側插圖為白色方光處SE 強度分布曲線 (c)-(f) 分別為HB結構SEM影像及In、Zn及O之EDS訊號分佈圖 75 圖 5-3 (a) In2O3(ZnO)m/In:ZnO/ZnO HB TEM明視野影像包含區域(I)、(II)及(III)元素In EDS結果;插圖部分為整體結構電子束繞射結果 (b)上圖為橫截面TEM明視野影像;下圖為同一區域HAADF影像 (c)為圖(b)矩形區域中倍率HAADF影像,其中包含區域(i)、(ii)及(iii) In濃度和擇區電子束繞射結果 (d)-(g)為圖(c)區域(iii)高倍率HAADF相關結果 (d) In-O層與 In/Zn-O厚層沿著c軸交替堆疊 (e) In/Zn-O厚層中的鋸齒狀調變結構 (f) 原子級HAADF對比影像主要由Zn 及In 貢獻 (g) 對比影像強度及晶格常數分佈。 79 圖 5-4 HBs結構成長機制示意圖 81 圖 5-5 (a) 常溫CL訊號圖譜,HB結構 (b) SEM影像 (c) 波長385nm單光影像 83 圖 5-6 (a) In濃度、能量過濾SE影像及385nm單光CL影像訊號強度在HB結構短軸方向上的分布變化,偵測區域為插圖中白色矩形區域 (b) HB 結構可能的能帶結構及輻射再結合可能路徑示意圖 86 圖 5-7 化學氣相沉積法成長之摻雜銦的氧化鋅緞帶結構利用電子束微影製程製作之四點量測元件SEM圖 89 圖 5-8 (a)摻雜銦的氧化鋅緞帶結構四點量測電性結果 (b)對圖(a)曲線做線性分析 89 圖 5-9 以電子束微影製程製備之奈米線熱電性質量測元件 90 圖 5-10 水熱法製程成長之氧化鋅奈米線之元件,奈米線兩端之溫差以及電壓差之關係圖 90 圖 5-11 HB結構中聲子與電子傳輸路徑示意圖 91

    [1] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, pp. 12727-12731, 05/15/ 1993.
    [2] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, vol. 47, pp. 16631-16634, 06/15/ 1993.
    [3] R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, and N. El-Masry, "MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications," Journal of Crystal Growth, vol. 170, pp. 817-821, 1/1/ 1997.
    [4] R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Physical Review B, vol. 61, pp. 3091-3097, 01/15/ 2000.
    [5] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou, "Nitride-based light emitting diodes with textured sidewalls and pillar waveguides," Ieee Photonics Technology Letters, vol. 18, pp. 2517-2519, Nov-Dec 2006.
    [6] M.-K. Lee and K.-K. Kuo, "Single-step fabrication of Fresnel microlens array on sapphire substrate of flip-chip gallium nitride light emitting diode by focused ion beam," Applied Physics Letters, vol. 91, pp. -, 2007.
    [7] T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, "Piezoelectric effect in group-III nitride-based heterostructures and quantum wells," in III-V Nitride Semiconductors Applications and Devices, E. T. Tu and M. O. Manasreh, Eds., New York: Taylor & Francis, pp. 414-426, 2003.
    [8] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology, vol. 20, pp. S35-S44, Apr 2005.
    [9] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
    [10] B. Meyer and D. Marx, "Density-functional study of the structure and stability of ZnO surfaces," Physical Review B, vol. 67, p. 035403, 01/09/ 2003.
    [11] A. Kobayashi, O. F. Sankey, and J. D. Dow, "Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO," Physical Review B, vol. 28, pp. 946-956, 07/15/ 1983.
    [12] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructures, vol. 34, pp. 3-32, 7// 2003.
    [13] M. D. McCluskey and S. J. Jokela, "Defects in ZnO," Journal of Applied Physics, vol. 106, p. 071101, 2009.
    [14] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, "First-principles study of native point defects in ZnO," Physical Review B, vol. 61, pp. 15019-15027, 06/01/ 2000.
    [15] F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, "The Oxygen Vacancy as the Origin of a Green Emission in Undoped ZnO," physica status solidi (b), vol. 226, pp. R4-R5, 2001.
    [16] W. E. Carlos, E. R. Glaser, and D. C. Look, "Magnetic resonance studies of ZnO," Physica B: Condensed Matter, vol. 308–310, pp. 976-979, 12// 2001.
    [17] F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, "Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO," Physical Review Letters, vol. 91, p. 205502, 11/10/ 2003.
    [18] C. G. Van de Walle, "Hydrogen as a Cause of Doping in Zinc Oxide," Physical Review Letters, vol. 85, pp. 1012-1015, 07/31/ 2000.
    [19] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, "Hydrogen: A Relevant Shallow Donor in Zinc Oxide," Physical Review Letters, vol. 88, p. 045504, 01/10/ 2002.
    [20] Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, and M. Morinaga, "Effects of hydrogen doping through ion implantation on the electrical conductivity of ZnO," International Journal of Hydrogen Energy, vol. 29, pp. 323-327, 3// 2004.
    [21] D. C. Look, C. Coşkun, B. Claflin, and G. C. Farlow, "Electrical and optical properties of defects and impurities in ZnO," Physica B: Condensed Matter, vol. 340–342, pp. 32-38, 12/31/ 2003.
    [22] F. Bernardini, "Spontaneous and Piezoelectric Polarization: Basic Theory vs. Practical Recipes," in Nitride Semiconductor Devices: Principles and Simulation, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 49-68.
    [23] W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of Crystal Growth, vol. 203, pp. 186-196, 5// 1999.
    [24] Y. S. Gu, J. J. Qi, and Y. Zhang, "Surface Energy of In-Doped ZnO Studied by PAW+U Method," Materials Science Forum, vol. 561-565, pp. 1861-1864, 2007.
    [25] T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, "Radiative recombination of electron-hole pairs spatially separated due to quantum-confined Stark and Franz-Keldish effects in ZnO/Mg0.27Zn0.73O quantum wells," Applied Physics Letters, vol. 81, pp. 2355-2357, Sep 2002.
    [26] C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis, "Internal electric field in wurtzite ZnO/Zn0.78Mg0.22O quantum wells," Physical Review B, vol. 72, p. 241305, Dec 2005.
    [27] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature, vol. 406, pp. 865-868, 08/24/print 2000.
    [28] K. Aniruddha, V. Amit, F. Tian, Z. Pei, J. Raj, and J. Debdeep, "Charge transport in non-polar and semi-polar III-V nitride heterostructures," Semiconductor Science and Technology, vol. 27, p. 024018, 2012.
    [29] M. M. C. Chou, L. Chang, H.-Y. Chung, T.-H. Huang, J.-J. Wu, and C.-W. Chen, "Growth and characterization of nonpolar ZnO (10-10) epitaxial film on gamma-LiAlO2 substrate by chemical vapor deposition," Journal of Crystal Growth, vol. 308, pp. 412-416, Oct 15 2007.
    [30] S. Zhou, J. Zhou, T. Huang, S. Li, J. Zou, J. Wang, X. Zhang, X. Li, and R. Zhang, "Nonpolar a-plane ZnO films fabricated on (302)gamma-LiAlO2 by pulsed laser deposition," Journal of Crystal Growth, vol. 303, pp. 510-514, May 15 2007.
    [31] H. Lin, S. Zhou, J. Zhou, X. Liu, S. Gu, S. Zhu, Z. Xie, P. Han, and R. Zhang, "Structural and optical properties of a-plane ZnO thin films synthesized on gamma-LiAlO2 (302) substrates by low pressure metal-organic chemical vapor deposition," Thin Solid Films, vol. 516, pp. 6079-6082, Jul 31 2008.
    [32] Y. C. Liang, "Growth and characterization of nonpolar a-plane ZnO films on perovskite oxides with thin homointerlayer," Journal of Alloys and Compounds, vol. 508, pp. 158-161, Oct 15 2010.
    [33] J. S. Tian, M. H. Liang, Y. T. Ho, Y. A. Liu, and L. Chang, "Growth of a-plane ZnO thin films on LaAlO3(100) substrate by metal-organic chemical vapor deposition," Journal of Crystal Growth, vol. 310, pp. 777-782, Feb 2008.
    [34] Y. T. Ho, W. L. Wang, C. Y. Peng, M. H. Liang, J. S. Tian, C. W. Lin, and L. Chang, "Growth of nonpolar (11-20) ZnO films on LaAlO3 (001) substrates," Applied Physics Letters, vol. 93, p. 121911, Sep 2008.
    [35] M. M. C. Chou, D. R. Hang, C. L. Chen, and Y. H. Liao, "Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates," Thin Solid Films, vol. 519, pp. 3627-3631, Mar 31 2011.
    [36] M. M. C. Chou, D. R. Hang, S. C. Wang, C. L. Chen, and C. Y. Lee, "Growth and characterizations of nonpolar [11-20] ZnO on [100] (La,Sr)(Al,Ta)O-3 substrate by chemical vapor deposition," Journal of Crystal Growth, vol. 312, pp. 1170-1174, Apr 1 2010.
    [37] T. Moriyama and S. Fujita, "Growth behavior of nonpolar ZnO on M-plane and R-plane sapphire by metalorganic vapor phase epitaxy," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 44, pp. 7919-7921, Nov 2005.
    [38] J. Zuniga-Perez, V. Munoz-Sanjose, E. Palacios-Lidon, and J. Colchero, "Facets evolution and surface electrical properties of nonpolar m-plane ZnO thin films," Applied Physics Letters, vol. 88, p. 261912, Jun 26 2006.
    [39] J. W. Lee, S. K. Han, S. K. Hong, J. Y. Lee, and T. Yao, "Characterization of microstructure and defects in epitaxial ZnO (11-20) films on Al(2)O(3) (1-102) substrates by transmission electron microscopy," Journal of Crystal Growth, vol. 310, pp. 4102-4109, Aug 2008.
    [40] S. K. Han, J. H. Kim, S. K. Hong, J. H. Song, J. H. Song, J. W. Lee, J. Y. Lee, S. I. Hong, and T. Yao, "Investigation of nonpolar (11-20) a-plane ZnO films grown under various Zn/O ratios by plasma-assisted molecular beam epitaxy," Journal of Crystal Growth, vol. 312, pp. 2196-2200, Jul 15 2010.
    [41] P. Pant, J. D. Budai, and J. Narayan, "Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation," Acta Materialia, vol. 58, pp. 1097-1103, Feb 2010.
    [42] J. J. Chen, H. Deng, N. Li, Y. L. Tian, and H. Ji, "Realization of nonpolar a-plane ZnO films on r-plane sapphire substrates using a simple single-source chemical vapor deposition," Materials Letters, vol. 65, pp. 716-718, Feb 28 2011.
    [43] J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, "Interface and defect structures in ZnO films on m-plane sapphire substrates," Journal of Crystal Growth, vol. 312, pp. 238-244, 1/1/ 2010.
    [44] 黃俊翰, "以複合製程成長氧化鋅奈米元件," 國立成功大學材料科學及工程學系,博士論文, 2011.
    [45] D. O. Smith, "Anisotropy in Permalloy Films," Journal of Applied Physics, vol. 30, pp. S264-S265, 1959.
    [46] T. G. Knorr and R. W. Hoffman, "Dependence of Geometric Magnetic Anisotropy in Thin Iron Films," Physical Review, vol. 113, pp. 1039-1046, 02/15/ 1959.
    [47] A. G. Dirks and H. J. Leamy, "Columnar microstructure in vapor-deposited thin films," Thin Solid Films, vol. 47, pp. 219-233, 12/15/ 1977.
    [48] S. Lichter and J. Chen, "Model for Columnar Microstructure of Thin Solid Films," Physical Review Letters, vol. 56, pp. 1396-1399, 03/31/ 1986.
    [49] H. v. Kranenburg, "Obliquely co-evaporated thin films for magnetic recording," University of Twente, Enschede, 1992.
    [50] N. V. Pleshivtsev, "Cathode Sputtering," Atomizdat, Moscow, 1968.
    [51] L. I. Maissel and R. Glang, Handbook of thin film technology: McGraw-Hill, 1970.
    [52] S. Müller-Pfeiffer, H. van Kranenburg, and J. C. Lodder, "A two-dimensional Monte Carlo model for thin film growth by oblique evaporation: simulation of two-component systems for the example of CoCr," Thin Solid Films, vol. 213, pp. 143-153, 5/29/ 1992.
    [53] http://en.wikipedia.org/wiki/Raman_spectroscopy.
    [54] W. Hayes and R. Loudon, Scattering of Light by Crystals: Dover Publications, 2012.
    [55] L. Bergman, X.-B. Chen, J. Huso, J. L. Morrison, and H. Hoeck, "Raman scattering of polar modes of ZnO crystallites," Journal of Applied Physics, vol. 98, pp. -, 2005.
    [56] C. L. Hsiao, L. W. Tu, T. W. Chi, M. Chen, T. F. Young, C. T. Chia, and Y. M. Chang, "Micro-Raman spectroscopy of a single freestanding GaN nanorod grown by molecular beam epitaxy," Applied Physics Letters, vol. 90, p. 043102, Jan 22 2007.
    [57] N. Tokio, O. Yukiyasu, M. Naoki, and K. Akio, "Transparent Conducting Boron-Doped Zinc Oxide Films Deposited by DC-Magnetron Sputtering in B 2 H 6 - A r Mixtures," Japanese Journal of Applied Physics, vol. 34, p. 3623, 1995.
    [58] B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, "Band-gap tailoring of ZnO by means of heavy Al doping," Physical Review B, vol. 37, pp. 10244-10248, 06/15/ 1988.
    [59] J. Han, P. Q. Mantas, and A. M. R. Senos, "Effect of Al and Mn doping on the electrical conductivity of ZnO," Journal of the European Ceramic Society, vol. 21, pp. 1883-1886, // 2001.
    [60] S. Takeda and M. Fukawa, "Highly stable hydrogenated gallium-doped zinc oxide thin films grown by DC magnetron sputtering using H2/Ar gas," Thin Solid Films, vol. 468, pp. 234-239, 12/1/ 2004.
    [61] K. Tominaga, T. Takao, A. Fukushima, T. Moriga, and I. Nakabayashi, "Amorphous ZnO–In2O3 transparent conductive films by simultaneous sputtering method of ZnO and In2O3 targets," Vacuum, vol. 66, pp. 505-509, 8/19/ 2002.
    [62] T. Y. Ma and D. K. Shim, "Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films," Thin Solid Films, vol. 410, pp. 8-13, 5/1/ 2002.
    [63] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, "Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy," Applied Physics Letters, vol. 77, pp. 3761-3763, 2000.
    [64] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, "Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition," Thin Solid Films, vol. 445, pp. 263-267, 12/15/ 2003.
    [65] S. S. Shinde, P. S. Shinde, C. H. Bhosale, and K. Y. Rajpure, "Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films," Journal of Physics D: Applied Physics, vol. 41, p. 105109, 2008.
    [66] S. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, and B. H. Zhao, "p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes," Solid State Communications, vol. 148, pp. 25-28, 10// 2008.
    [67] W. Jun and Y. Yintang, "Deposition of K-doped p type ZnO thin films on (0001) Al2O3 substrates," Materials Letters, vol. 62, pp. 1899-1901, 4/30/ 2008.
    [68] Y. Yan, S. B. Zhang, and S. T. Pantelides, "Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO," Physical Review Letters, vol. 86, pp. 5723-5726, 06/18/ 2001.
    [69] T. M. Barnes, K. Olson, and C. A. Wolden, "On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide," Applied Physics Letters, vol. 86, pp. -, 2005.
    [70] Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, and D. P. Norton, "p-type behavior in phosphorus-doped (Zn,Mg)O device structures," Applied Physics Letters, vol. 84, pp. 3474-3476, 2004.
    [71] J. C. Fan, C. Y. Zhu, S. Fung, Y. C. Zhong, K. S. Wong, Z. Xie, G. Brauer, W. Anwand, W. Skorupa, C. K. To, B. Yang, C. D. Beling, and C. C. Ling, "Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering," Journal of Applied Physics, vol. 106, pp. -, 2009.
    [72] T. Yamamoto and H. Katayama-Yoshida, "Physics and control of valence states in ZnO by codoping method," Physica B: Condensed Matter, vol. 302–303, pp. 155-162, // 2001.
    [73] J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, "p-type conduction in N–Al co-doped ZnO thin films," Applied Physics Letters, vol. 85, pp. 3134-3135, 2004.
    [74] W. Lim, Y.-L. Wang, F. Ren, D. P. Norton, I. I. Kravchenko, J. M. Zavada, and S. J. Pearton, "Room-Temperature-Deposited Indium-Zinc Oxide Thin Films with Controlled Conductivity," Electrochemical and Solid-State Letters, vol. 10, pp. H267-H269, September 1, 2007 2007.
    [75] Y. S. Rim, D. H. Kim, and K. H. Kim, "Preparation of Indium Zinc Oxide Thin Films Deposited on Various Substrates," Molecular Crystals and Liquid Crystals, vol. 514, pp. 99/[429]-108/[438], 2009/11/11 2009.
    [76] P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, and R. Martins, "Effect of different dopant elements on the properties of ZnO thin films," Vacuum, vol. 64, pp. 281-285, 1// 2002.
    [77] H.-K. Kim, K.-S. Lee, and J. H. Kwon, "Transparent indium zinc oxide top cathode prepared by plasma damage-free sputtering for top-emitting organic light-emitting diodes," Applied Physics Letters, vol. 88, pp. -, 2006.
    [78] L. M. Li, C. C. Li, J. Zhang, Z. F. Du, B. S. Zou, H. C. Yu, Y. G. Wang, and T. H. Wang, "Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires," Nanotechnology, vol. 18, p. 225504, 2007.
    [79] K. W. Liu, M. Sakurai, and M. Aono, "Indium-doped ZnO nanowires: Optical properties and room-temperature ferromagnetism," Journal of Applied Physics, vol. 108, pp. -, 2010.
    [80] S. Lin, Z. Ye, H. He, Y. Zeng, H. Tang, B. Zhao, and L. Zhu, "Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorods array," Journal of Crystal Growth, vol. 306, pp. 339-343, 8/15/ 2007.
    [81] H. J. Fan, B. Fuhrmann, R. Scholz, C. Himcinschi, A. Berger, H. Leipner, A. Dadgar, A. Krost, S. Christiansen, U. Gosele, and M. Zacharias, "Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping," Nanotechnology, vol. 17, pp. S231-S239, Jun 2006.
    [82] A. Mashkoor, Z. Jiong, I. Javed, M. Wei, X. Lin, M. Rigen, and Z. Jing, "Conductivity enhancement by slight indium doping in ZnO nanowires for optoelectronic applications," Journal of Physics D: Applied Physics, vol. 42, p. 165406, 2009.
    [83] J. Su, H. Li, Y. Huang, X. Xing, J. Zhao, and Y. Zhang, "Electronic transport properties of In-doped ZnO nanobelts with different concentration," Nanoscale, vol. 3, pp. 2182-2187, 2011.
    [84] N. Kimizuka and E. Takayama, "Ln(Fe3+M2+)O4 compounds with layer structure [Ln : Y, Er, Tm, Yb, and Lu, M : Mg, Mn, Co, Cu, and Zn]," Journal of Solid State Chemistry, vol. 40, pp. 109-116, 11/1/ 1981.
    [85] J. L. F. Da Silva, Y. Yan, and S.-H. Wei, "Rules of Structure Formation for the Homologous InMO3(ZnO)n Compounds," Physical Review Letters, vol. 100, p. 255501, 06/24/ 2008.
    [86] V. H. Kasper, "Neuartige phasen mit wurtzitдhnlichen strukturen im system ZnO-In2O3," Z. Anorg. Allg. Chem., vol. 349, pp. 113-123, 1967.
    [87] P. J. Cannard and R. J. D. Tilley, "New intergrowth phases in the ZnO-In2O3 system," Journal of Solid State Chemistry, vol. 73, pp. 418-426, 4// 1988.
    [88] N. Kimizuka, M. Isobe, and M. Nakamura, "Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m = 3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m = 7, 8, 9, and 16) in the In2O3-ZnGa2O4-ZnO System," Journal of Solid State Chemistry, vol. 116, pp. 170-178, 4// 1995.
    [89] M. Isobe, N. Kimizuka, M. Nakamura, and T. Mohri, "Structures of LuFeO3(ZnO)m (m =1, 4, 5 and 6)," Acta Crystallographica Section C, vol. 50, pp. 332-336, 1994.
    [90] Y. Yan, S. J. Pennycook, J. Dai, R. P. H. Chang, A. Wang, and T. J. Marks, "Polytypoid structures in annealed In2O3–ZnO films," Applied Physics Letters, vol. 73, pp. 2585-2587, 1998.
    [91] Y. Yan, J. L. F. Da Silva, S.-H. Wei, and M. Al-Jassim, "Atomic structure of In2O3–ZnO systems," Applied Physics Letters, vol. 90, pp. -, 2007.
    [92] F. J. DiSalvo, "Thermoelectric Cooling and Power Generation," Science, vol. 285, pp. 703-706, July 30, 1999 1999.
    [93] A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics and Materials," Annual Review of Materials Research, vol. 41, pp. 399-431, 2011.
    [94] M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, "Electronic Transport in Semimetallic Cerium Sulfide," Physical Review, vol. 133, pp. A1143-A1152, 02/17/ 1964.
    [95] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano: Taylor & Francis, 2005.
    [96] Richman.R, "Prospects for efficient thermoelectric materials in the near term," presented at the DARPA/DOE High Efficient Thermoelectric Workshop, San Diego, 2002.
    [97] J. J. a. T. R. J. Anaya, "Nanowires - Recent Advances, InTech," 2012.
    [98] J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids: OUP Oxford, 2001.
    [99] M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, and D. Poulikakos, "Significant Reduction of Thermal Conductivity in Si/Ge Core−Shell Nanowires," Nano Letters, vol. 11, pp. 618-623, 2011/02/09 2010.
    [100] http://www.hitachi-hitec.com/global/index.html.
    [101] D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science: Springer, 2009.
    [102] http://www.bruker.com/.
    [103] http://www.ebsd.com/popup/polefigure.htm.
    [104] http://www-ssrl.slac.stanford.edu/nexafs.html.
    [105] B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids: Springer, 1990.
    [106] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nature Materials, vol. 4, pp. 42-46, Jan 2005.
    [107] T. Aoki, Y. Hatanaka, and D. C. Look, "ZnO diode fabricated by excimer-laser doping," Applied Physics Letters, vol. 76, pp. 3257-3258, May 29 2000.
    [108] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, "Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films," Applied Physics Letters, vol. 78, pp. 2285-2287, Apr 2001.
    [109] B. P. Zhang, B. L. Liu, J. Z. Yu, Q. M. Wang, C. Y. Liu, Y. C. Liu, and Y. Segawa, "Photoluminescence and built-in electric field in ZnO/Mg0.1Zn0.9O quantum wells," Applied Physics Letters, vol. 90, p. 132113, Mar 2007.
    [110] J. Zuniga-Perez, V. Munoz-Sanjose, E. Palacios-Lidon, and J. Colchero, "Polarity effects on ZnO films grown along the nonpolar 11(2)over-bar0 direction," Physical Review Letters, vol. 95, p. 226105, Nov 2005.
    [111] J. H. Huang, C. Y. Chen, Y. F. Lai, Y. I. Shih, Y. C. Lin, J. H. He, and C. P. Liu, "Large-Area Oblique-Aligned ZnO Nanowires through a Continuously Bent Columnar Buffer: Growth, Microstructure, and Antireflection," Crystal Growth & Design, vol. 10, pp. 3297-3301, Aug 2010.
    [112] S. Hayamizu, H. Tabata, H. Tanaka, and T. Kawai, "Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition," Journal of Applied Physics, vol. 80, pp. 787-791, Jul 15 1996.
    [113] J. H. Guo, L. Vayssieres, C. Persson, R. Ahuja, B. Johansson, and J. Nordgren, "Polarization-dependent soft-x-ray absorption of highly oriented ZnO microrod arrays," Journal of Physics-Condensed Matter, vol. 14, pp. 6969-6974, Jul 22 2002.
    [114] J. W. Chiou, C. L. Yueh, J. C. Jan, H. M. Tsai, W. F. Pong, I. H. Hong, R. Klauser, M. H. Tsai, Y. K. Chang, Y. Y. Chen, C. T. Wu, K. H. Chen, S. L. Wei, C. Y. Wen, L. C. Chen, and T. J. Chuang, "Electronic structure of the carbon nanotube tips studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy," Applied Physics Letters, vol. 81, pp. 4189-4191, Nov 25 2002.
    [115] J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, "Electronic structure of ZnO nanorods studied by angle-dependent x-ray absorption spectroscopy and scanning photoelectron microscopy," Applied Physics Letters, vol. 84, pp. 3462-3464, May 3 2004.
    [116] C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, "Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod," Applied Physics Letters, vol. 92, p. 223102, Jun 2 2008.
    [117] F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, "Silent Raman modes in zinc oxide and related nitrides," Journal of Applied Physics, vol. 97, p. 053516, Mar 1 2005.
    [118] C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, "First-Order Raman Effect in Wurtzite-Type Crystals," Physical Review, vol. 181, pp. 1351-1363, 1969.
    [119] S. C. Minne, S. R. Manalis, A. Atalar, and C. F. Quate, "Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor," Applied Physics Letters, vol. 68, pp. 1427-1429, Mar 1996.
    [120] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, "Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films," Advanced Functional Materials, vol. 13, pp. 811-814, Oct 2003.
    [121] S. J. Chen, Y. C. Liu, C. L. Shao, R. Mu, Y. M. Lu, J. Y. Zhang, D. Z. Shen, and X. W. Fan, "Structural and optical properties of uniform ZnO nanosheets," Advanced Materials, vol. 17, pp. 586-590, Mar 2005.
    [122] Q. Y. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, and M. Grundmann, "Metal-insulator transition in co-doped ZnO: Magnetotransport properties," Physical Review B, vol. 73, p. 205342, May 2006.
    [123] K. J. Kim and Y. R. Park, "Large and abrupt optical band gap variation in In-doped ZnO," Applied Physics Letters, vol. 78, pp. 475-477, Jan 2001.
    [124] S. B. Zhang, S. H. Wei, and A. Zunger, "Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO," Physical Review B, vol. 63, p. 075205, Feb 2001.
    [125] S. C. Andrews, M. A. Fardy, M. C. Moore, S. Aloni, M. J. Zhang, V. Radmilovic, and P. D. Yang, "Atomic-level control of the thermoelectric properties in polytypoid nanowires," Chemical Science, vol. 2, pp. 706-714, 2011.
    [126] P. Kazemian, S. A. M. Mentink, C. Rodenburg, and C. J. Humphreys, "High resolution quantitative two-dimensional dopant mapping using energy-filtered secondary electron imaging," Journal of Applied Physics, vol. 100, p. 054901, Sep 2006.
    [127] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, and J. G. Hou, "Indium-doped zinc oxide nanobelts," Chemical Physics Letters, vol. 387, pp. 466-470, 4/1/ 2004.
    [128] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," Journal of Applied Physics, vol. 79, pp. 7983-7990, May 1996.
    [129] A. Shih, J. Yater, C. Hor, and R. Abrams, "Secondary electron emission studies," Applied Surface Science, vol. 111, pp. 251-258, // 1997.
    [130] A. A. Suvorova and S. Samarin, "Secondary electron imaging of SiC-based structures in secondary electron microscope," Surface Science, vol. 601, pp. 4428-4432, 9/15/ 2007.
    [131] A. P. Roth, J. B. Webb, and D. F. Williams, "Band-gap narrowing in heavily defect-doped ZnO," Physical Review B, vol. 25, pp. 7836-7839, 06/15/ 1982.
    [132] N. F. Mott, Metal-insulator transitions, 2nd ed. London ; New York: Taylor & Francis, 1990.
    [133] C. H. Lee, G. C. Yi, Y. M. Zuev, and P. Kim, "Thermoelectric power measurements of wide band gap semiconducting nanowires," Applied Physics Letters, vol. 94, Jan 2009.
    [134] S. H. Lee, W. Shim, S. Y. Jang, J. W. Roh, P. Kim, J. Park, and W. Lee, "Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method," Nanotechnology, vol. 22, Jul 2011.
    [135] Y. Yang, K. C. Pradel, Q. S. Jing, J. M. Wu, F. Zhang, Y. S. Zhou, Y. Zhang, and Z. L. Wang, "Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts," Acs Nano, vol. 6, pp. 6984-6989, Aug 2012.

    無法下載圖示 校內:2019-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE