簡易檢索 / 詳目顯示

研究生: 楊育彰
Yang, Yu-Chang
論文名稱: 應用微型渦輪發電系統於六軸無人載具之研究
A Study on Applying Micro Gas Turbine Power Generation System to Hexacopter Unmanned Aerial Vehicles
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 112
中文關鍵詞: 多旋翼無人機渦輪軸發動機微型渦輪發電繫留機飛行
外文關鍵詞: Multirotor UAV, Turboshaft engine, Microturbine power generation, Tethered flight
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多旋翼無人機近年發展快速,不管是休閒娛樂、軍事用途、農業應用等,在許多領域上皆可發揮。然而多旋翼無人機本身僅透過馬達轉數進行控制,在馬達不停加減速下將會無形中降低電池的使用效率,對於以電池為主要動力的多旋翼無人機而言是一大瓶頸,目前如何提升續航力成為該領域長期探討的議題。混合動力系統有著高續航、節省燃料消耗等優勢,若將混和動力系統應用在多旋翼無人機上,有利於起飛重量及滯空時間等性能提升,增加使用效益,本文使用KingTech的K60-TP渦輪軸發動機作為動力核心,並配選永磁馬達作為發電機供電給多旋翼無人機,初步評估飛行的可行性,以及與純電池進行輸出比較,最終判斷微型渦輪發電系統是否適配於多旋翼無人機。
    最終實驗測試結果,發現在渦輪核心轉速140,000 rpm下具有最佳的輸出效能,且證明了微型渦輪發電系統能夠使多旋翼無人機飛行,並可觀察到,在油門值52 %以上時,純電池輸出功率大於渦輪發電系統輸出功率,並且在油門值70 %時,渦輪發電系統輸出功率接近極限值,而在繫留機飛行實驗得知,在10 AWG線長度10 m並負載重量17 kg下,微型渦輪發電系統將可穩定操作六軸植保機。

    In recent years, multi-rotor unmanned aerial vehicles (UAVs) have experienced rapid development and have found applications in various fields such as recreational, military, and agricultural purposes. However, one major limitation of battery-powered multi-rotor UAVs is their reliance on motor speed control, which can reduce battery efficiency due to constant motor acceleration and deceleration. Enhancing the endurance of battery-powered multi-rotor UAVs has become a long-standing topic of discussion in the field. Hybrid power systems, with their advantages of extended endurance and reduced fuel consumption, offer a potential solution. By applying hybrid power systems to multi-rotor UAVs, improvements can be made in takeoff weight and loitering time, resulting in increased operational efficiency. This paper focuses on evaluating the feasibility of using a hybrid power system in multi-rotor UAVs. The KingTech K60-TP turboshaft engine is selected as the power core, along with a permanent magnet motor as a generator to supply power to the UAV. The study conducts initial assessments of the system's flight feasibility and compares its performance with that of a pure battery system. The aim is to determine whether the micro-turbine power generation system is suitable for integration into multi-rotor UAVs.
    The final experimental test results revealed that the micro gas turbine power generation system achieves optimal output performance at a turbine core speed of 140,000 rpm. It also demonstrated the capability of the micro gas turbine power generation system to enable flight for the multi-rotor unmanned aerial vehicle. Moreover, it was observed that at throttle values above 52%, the pure battery output power surpasses that of the gas turbine power generation system, and at 70% throttle, the gas turbine system reaches close to its maximum output. Additionally, during the tethered flight experiment with a 10-meter length of 10 AWG wire and a payload weight of 17 kg, the micro gas turbine power generation system demonstrated stable operation for the hexacopter agricultural UAV.

    中文摘要 I 英文摘要 II 致謝 VI 表目錄 XI 圖目錄 XIV 符號表 XVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 8 1.4 研究目的 11 第二章 基礎理論分析 13 2.1 氣渦輪機理想熱循環原理 13 2.2 轉動軸輸出分析 19 2.3 基礎發電機分析 21 2.4 電力系統分析 25 第三章 實驗規劃與流程 30 3.1 實驗規劃 30 3.2 實驗流程 30 3.2.1 系統設計 31 3.2.2 地面測試 35 3.2.3 實際飛行 36 3.2.4 實驗操作問題即故障排除 36 第四章 實驗設備 39 4.1 供電系統 39 4.1.1 微型燃氣渦輪軸發動機 39 4.1.2 無刷發電機 42 4.1.3 聯軸器 43 4.1.4 整流器 44 4.1.5 DC-DC轉換器 45 4.1.6 壓敏電阻 46 4.1.7 無熔絲開關 47 4.1.8 AWG線 48 4.2 無人機系統 48 4.2.1 六軸植保機 48 4.2.2 動力系統 49 4.2.3 飛行控制器 51 4.2.4 GPS接收器 52 4.2.5 數據傳輸模組 52 4.2.6 地面控制站 53 4.2.7 MAVLink 54 4.3 量測設備 54 4.3.1 Raspberry Pi 4 54 4.3.2 功率感測器 55 4.3.3 轉速感測器 56 4.3.4 磅秤 59 4.4 其他設備 59 4.4.1 遙控器與訊號接受器 59 4.4.2 電池 61 4.4.3 燃料 62 4.4.4 雷射水平儀 63 第五章 結果與討論 65 5.1 地面測試 65 5.1.1 純電池拉載測試 65 5.1.2 微型渦輪發電系統拉載測試 68 5.2 微型渦輪發電系統地面測試數據分析 72 5.2.1 渦輪核心轉速110,000 rpm 72 5.2.2 渦輪核心轉速120,000 rpm 78 5.2.3 渦輪核心轉速130,000 rpm 84 5.2.4 渦輪核心轉速140,000 rpm 90 5.3 六軸植保機可行性評估 97 5.4 微型渦輪發電系統輸出能力評估 98 5.5 飛行實驗 98 5.6 微型渦輪發電系統性能評估 102 5.7 微型渦輪發電系統架設六軸植保機之概念圖 104 第六章 結論與未來展望 107 6.1 結論 107 6.2 未來展望 107 參考文獻 109

    [1] 楊策、劉宏偉、李曉、買靖東,微型燃氣輪機技術,北京理工大學車輛與交通工程學院專題綜述,2003。
    [2] Yimin Gao, Mehrdad Ehsani and John M. Miller, “Hybrid Electric Vehicle: Overview and State of the Art,” in Proceedings of the IEEE International Symposium on Industrial Electronics, Vol.1, pp.307-316, Dubrovnik, Croatia, 2005.
    [3] 莊秉勳,微型渦輪發電系統之開發,國立清華大學動力機械工程學系碩士論文,2012。
    [4] Kyuho Sim, Bonjin Koo, Chang Ho Kim, Tae Ho Kim, “Development and Performance Measurement of Micro-Power Pack Using Micro-Gas Turbine Driven Automotive Alternators,” Applied Energy, pp.309-319, 2013.
    [5] K. J. Moody, Design, Analysis, and Integration of A Turboelectric Propulsion and Power System for Unmanned Aircraft, Oklahoma State University, 2018.
    [6] 鍾昆翰,微型渦輪發電系統用於無人載具,國立成功大學航空太空工程研究所碩士論文,2021。
    [7] 徐榆鈞,四行程內燃機用於混合動力系統之可行性研究, 國立成功大學航空太空工程研究所碩士論文,2021。
    [8] M. J. Vick, High Efficiency Recuperated Ceramic Gas Turbine Engines for Small Unmanned Air Vehicle Propulsion, Department Of Mechanical Engineering, London, 2012.
    [9] 田家榮,微型渦輪發電系統性能分析與實驗驗證之研究,國立成功大學航空太空工程學系碩士論文,2020。
    [10] Zhengchao Wei, Yue Ma , Ningkang Yang , Shumin Ruan , Changle Xiang, “Reinforcement Learning Based Power Management Integrating Economic Rotational Speed of Turboshaft Engine and Safety Constraints of Battery for Hybrid Electric Power System,” Volume 263, Part B, 2023.
    [11] P. P. Walsh and P. Fletcher, SAE APR 755A Engine Station Numbering, Blackwell Science Ltd a Blackwell Publishing Company, 2004.
    [12] Olivier Cleynen, “Thermodynamique de l’ingénieur,” troisième edition, Creative Commons, 2014.
    [13] 旺材電機與電控,永磁交流伺服電動機轉矩常數和反電勢常數的規範化應用分析,2018。
    [14] 成功大學馬達科技中心,永久磁性直流馬達原理。https://reurl.cc/110e6X
    [15] L. I. Jusoh, E. Sulaiman, F. S. Bahrim and R. Kumar, “Design Comparison of Inner and Outer Rotor of Permanent Magnet Flux Switching Machine for Electric Bicycle Application,” IOP Conference Series: Materials Science and Engineering, Vol.226. Iss.1. IOP Publishing, pp. 012129, 2017.
    [16] Y. Roshni, Difference between Half Wave and Full Wave Rectifier, Basic Electronics, Electronics desk, 2019.
    [17] Cyril W. Lander, Power Electronics, 3rd ed., London, McGraw-Hill, 1993.
    [18] B. W, Williams, Power Electronics : Devices, Drivers and Applications, 2nd ed., Basingstoke, Macmillan, 1992.
    [19] Engr Fahad, Filter Circuit and Need of Filters in Electronics, Basic Electronics, Electronic Clinic, Mar. 2022.
    [20] Ye XIE, Al SAVVARISAL, Antonios TSOURDOS, Dan ZHANG, Jason GU,“Review of Hybrid Electric Powered Aircraft, Its Conceptual Design and Energy Management Methodologies,” Chinese Journal of Aeronautics, 2021.
    [21] Wenping Zhanga, Yiming Wangb, Po Xub, Donghui Lia, Baosong Liu,“DC-bus Voltage Balancing Control for 3-level DC/DC Converters in Renewable Generation Systems,”The 3rd International Conference on Power and Electrical Engineering, Singapore, 2022.
    [22] 張維庭,微型渦輪發電系統之動力流路設計及分析研究,國立成功大學航空太空工程學系碩士論文,2018。
    [23] KingTech Turbines, Engine Manual, Series 2, 2016.
    [24] HOBBYWING, XRotor Pro X6 User Manual, 2021.
    [25] Anis Koubâa, Azza Allouch, Maram Alajlan, Yasir Javed, Abdelfettah Belghith and Mohamed Khalgui ,“Micro air vehicle link (MAVLink) in a nutshell: a survey,”IEEE Access, 7 (7) pp.87658~87680, 2019.
    [26] 陳會安,Raspberry Pi 樹莓派:Python x AI 超應用聖經,旗標科技,2022。
    [27] PZEM-003/017直流通訊模塊,用戶手冊。
    [28] J. B. Heywood, Internal Combustion Engine Fundamentals, New York, McGraw-Hill, 1988.
    [29] 台灣中油股份有限公司,煤油安全資料表。
    https://reurl.cc/p6pLrl
    [30] Valentyn Barannik, and Maksym Burlaka, and Leonid Moroz and Abdul Nassar, “Direct Off-Design Performance Prediction of Micro Gas Turbine Engine for Distributed Power Generation,”ASME 2017 Gas Turbine India Conference, 2017.

    無法下載圖示 校內:2028-07-27公開
    校外:2028-07-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE