簡易檢索 / 詳目顯示

研究生: 盧冠丞
Lu, Kuan-Cheng
論文名稱: 利用協同過濾式推薦機制建立行動平台之個人化應用程式排名系統
Building a Personal Application Ranking System in Mobile Platform using the Collaborative Filtering Recommender Mechanism
指導教授: 謝孟達
Shieh, Meng-Dar
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 85
中文關鍵詞: 參考群體協同過濾式推薦機制顯性評價個人化ROC指標
外文關鍵詞: Reference groups, Collaborative filtering recommender, Explicit rating, Personalization, ROC index
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   參考群體是消費者進行購買決策時之重要參考依據。然而,對消費者而言,現存智慧型手機應用程式之行動平台所提供之排行榜與評價資訊並無法給予個別消費者有效的參考群體資訊做為決策之參考。因此,本研究提出以「顯性評價」為主的「協同過濾式推薦機制」建立新的應用程式排名計算方式,提供個人化的排名服務以減少使用者在行動平台上搜尋其偏好應用程式所浪費的時間。
      本研究主要分為兩個部分:(1)建立以協同過濾式推薦機制為基礎的個人化應用程式排名系統及(2)評估系統推薦之成效。
      利用ROC指標評估系統之效能,其結果顯示,本研究所提出之系統利用「協同過濾式推薦機制」建立之個人化排名服務對約70%的目標使用者具有完全正確的預測效果。就整體而言,系統可以對超過90%的使用者縮短其於行動平台搜尋應用程式的時間,平均約可有效地節省約50%的搜尋時間。另外,將使用者已經下載或購買之應用程式排名位置適當地調整更可進一步改善系統的推薦品質。

    The reference groups are the important references of customers when they make the purchasing decisions. However, the table of ranking and the evaluated information about applications offered from the mobile platform of smart phone nowadays cannot be supply enough for consumers as the effective reference information to make decisions. Hence, the study proposes a mechanism of collaborative filtering recommender based on the explicit rating to build a new way for computing the applications’ ranking, which can provide the personal ranking service for reducing the time lost in searching preferring applications.
    There are two parts of works included in this study. The first part of work is building a personal applications ranking system with the mechanism of the collaborative filtering recommender. The second part of the work is evaluating the recommender effects.
    By using the ROC index to evaluate the system efficiency, the experiment results show the totally correct prediction to about 70% of the users. In general, the system can offer users (over 90%) to shorten their time in searching applications on the mobile platform. It can save about 50% time effectively in searching. Besides, properly adjudging the location of the applications, which are downloaded or bought by users, can improve the recommender quality more.

    目錄 I 表目錄 IV 圖目錄 V 第一章 緒論 1 1.1 研究背景 1 1.1.1 智慧型手機應用程式市場迅速發展 1 1.1.2 應用程式資訊過載現象 2 1.2 研究動機 3 1.2.1 違規操控排名現象 3 1.2.2 使用者搜尋不易 4 1.3 研究目的 5 1.4 研究架構 6 第二章 文獻探討 8 2.1 參考群體 8 2.1.1 參考群體對消費者之重要性 8 2.1.2 參考群體之來源與影響力 9 2.1.3 口碑行銷 10 2.2 協同式過濾 12 2.2.1 資訊過濾 13 2.2.2 協同式過濾之定義 15 2.2.3 協同式過濾之優缺點 15 2.2.4 協同式過濾運作機制 16 2.3 推薦系統 21 2.3.1 推薦系統簡述 21 2.3.2 推薦系統的介面呈現方式 24 2.3.3 協同式推薦系統 25 2.3.4 協同式推薦系統相關研究 29 第三章 研究方法 31 3.1 網路爬蟲技術 31 3.1.1 網頁爬蟲技術種類 32 3.1.2 聚焦爬蟲技術工作原理 34 3.2 以協同式過濾推薦機制為主的個人化排序模型 35 3.2.1. 建立評分矩陣 36 3.2.2. 刪除無效資料 36 3.2.3. 轉換為二元偏好矩陣 38 3.2.4. 相似度計算 39 3.2.5. 個人化應用程式排名 40 3.3 系統設計 40 3.3.1 現存行動平台之系統流程 40 3.3.2 個人化排序服務系統流程 41 3.3.3 系統評估 43 第四章 實驗流程與架構 47 4.1 實驗流程 47 4.2 實驗限制 48 4.3 前置作業 49 4.3.1 網頁分析 49 4.3.2 資料庫建立 52 4.4 排序模組 55 4.4.1 資料處理 55 4.4.2 協同式過濾推薦排序預測 58 4.5 頁面呈現 62 4.6 驗證分析 63 第五章 結論與建議 69 5.1 實驗結果與討論 69 5.2 對實務界之建議 70 5.3 研究貢獻 71 5.4 未來發展方向 72 參考文獻 73 中文文獻 73 英文文獻 74 附錄一 80 附錄二 81

    中文文獻
    [1]李雅靖、吳忠翰,「網路口碑訊息對消費者信任的影響」,國立中山大學傳播管理研究所,2011。
    [2]李麗華、鄭婕妤、李富民,廖姶涵,「基於RFM分析法之顧客適性化產品推薦機制」,International Journal of Commerce and Strategy, 4(2), pp.135-151,2012。
    [3]林亞輪,「以資料探勘技術建構之即時商品推薦系統」,嶺東科技大學資訊管理與應用研究所,2012。
    [4]莊清男,「協同過濾式群體推薦」,國立中央大學資訊管理研究所,2005。
    [5]張瑋玲,「資料採礦於精品業需求鏈推薦機制探勘之研究」,淡江大學管理科學研究所,2011。
    [6]廖建智,「分散式資源分享與推薦」,國立交通大學資訊科學研究所,2001。
    [7]廖婉菁,「應用協同過濾機制於商品推薦之研究-以手機網站為例」,中原大學資訊管理研究所,2002。
    [8]蕭欽元,「整合約略集合與多重特徵探勘之推薦方法」,國立成功大學資訊工程研究所,2008。
    [9]廖婉淑,「利用整合式的機器學習方式提高垃圾網站偵測率」,國立台灣科技大學資訊工程系,2009。
    [10]廖品妍,「以顯性評價為主之相似性推薦」,朝陽科技大學資訊管理學系,2010。
    [11]劉睿哲,「Collaborative Filtering based on Co-clustering with CCAM」,國立中央大學資訊工程研究所,2011。
    [12]戴英修,「考慮商品異質性改善協同過濾系統」,國立清華大學科技管理研究所,2010。

    英文文獻
    [13]Arndt, J., "Role of Product-Related Conversation in the Diffusion of A New Product," Journal of Marketing Research, pp.291-295, 1967.
    [14]Armstrong, J. S., "Principles of Forecasting-A Handbook for Researchers and Practitioners," Kluwer Academic Publishers, 2001.
    [15]Akinyele J., http://www.csee.umbc.edu/~jklabrou/courses/fall1999_691f/ week10/john_akinyele_recommender_systems/491f_files/v3_document.htm, 2002.
    [16]Anand D., Bharadwaj K. K., "Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarties," Expert Systems with Applications, vol.38, iss. 5, pp.5101-5109, 2011.
    [17]Breese, J. S., Heckerman, D., and Kadie, C., "Empirical Analysis of Predictive Algorithm for Collaborative Filtering," Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp.43-52, 1998.
    [18]Badrul, S., George, K., Joseph, K., and John, R., "Analysis of Recommendation Algorithm for E-Commerce," Communication of ACM, 2000.
    [19]Bobadilla J., Ortega F., Hernando A., "Improving collaborating filtering recommender system results and performance using genetic algorithms," Knowledge-Based Systems, vol.24, iss.8, pp.1310-1316, 2011.
    [20]Bobadilla J., Hernando A., Ortega F., "A framework for collaborative filtering recommender systems, "Expert System with Application, vol.38, iss.12, pp.14609-14623, 2012.
    [21]Dhillon, N., "Achieving Effective Personalization and Customization Using Collaborative Filtering," http://home1.gte.net/dhillos/cf., 1995.
    [22]Douglas W. and Gary, M., "A Conceptual Framework for Text Filtering," Medical Informatics and Computational Intelligence Laboratory Electronic Engineering Department, 1996.
    [23]Devi, M. K., Kavitha, Venkatesh, P., "Kernal based collaborative recommender system for e-purching," Indian Academy o Sciences, Vol.35, part.5, pp.513-524, 2010.
    [24]Engel, J., James, F., Roger, D. Blackwell K., and Paul, W. Miniard, "Consumer Behavior," 7th edition, 1993.
    [25]Goldberg, D., "Using Collaborative Filtering to Weave An Information Tapestry, "Association for Computing Machinery Communications of the ACM, New York, Vol.35, Iss.12, pp.61-70, 1992.
    [26]Gilly, Mary C., John, L. Graham, Mary, F., Larua, J. Yale, "A Dyadic Study of Interpersonal Information Search," Journal of the Academy of Marketing Science, (25), Iss. 12, pp.83-100, 1998.
    [27]Adomavicius, G. and Tuzhilin, A., "Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions," IEEE Transactions on Knowledge and Data Engineering, 17(6), pp.734-749, 2005.
    [28]Hugstand, P., James W., and Grand D., "The Effects of Social Risk on Consumer Information Search," Journal of Service Marketing, (1), pp.47-52, 1987.
    [29]Hawkins, G., Fischer, G. W., S.A., "Strategy Compatibility, Scale Compatibility, and the Prominence Effect," Journal of Experimental Psycho; ogy : Human Perception and Performance, (19), pp.580-597, 1992.
    [30]Throsten, H. T., Kevin, P. G., Gianfranco W., & Dwayne, D. G., "Electronic word-of-mouth via consumer-opinion platforms: Motivates consumers to articulate themselves on the internet?," Journal of Interactive Marketing, 18(1), pp.38-52, 2004.
    [31]H. J. Ahn, "A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-starting Problem," International Journal of Information Sciences, vol.178, no.1, pp.37-51, 2008.
    [32]Jarvenpaa, S. L., N. Tractinsky, & M. Vitale. "Consumer trust in an Internet store," Information Technology and Management, 1(1-2), pp.45-72, 2000.
    [33]Johathan, L., Herlocker, J., Konstan, J., and Riedl, J., "Explaining Collaborative Filtering Recommendations," ACM 2000 Conference on Computer Supported Cooperative Work, 2000.
    [34]Kotler, P., "Marketing Management," 7th edition,1999.
    [35]Kim H. N., Abdulmotaleb E. S., Jo G. S., "Collaborative error-reflected models for cold-start recommender systems," Decision Support Systems, vol.51, iss.3, pp.519-531, 2011.
    [36]Lilien, G. L., P. Kotler, K. S. Moorthy., "Marketing Models," Prentice Hall, 1992.
    [37]Lee, S. K., Cho, Y. H. and Kim, L. H., "Collaborative Filtering with Ordinal Scale-based Implicit Ratings for Mobile Music Recommendations," Information Sciences, 180(1), 2142-2155, 2010.
    [38]Lopez-Nores, M., Blanco-Fernandez, Y., Pazos-Arias, JJ, Gil-Solla, A., "Property-based collaborative filtering for health-aware recommender systems," 2011 IEEE Conference on Consumer Electronics (ICCE), pp.345-346, 2011.
    [39]Murthi, B. P. S., and S. Sarkar, "The Role of the Management Sciences in Research on Personalization," Management Science,49(10), pp.1344-1362, 2003.
    [40]Min, S. H. and Han, I., "Detection of the Customer Time-variant Pattern for Improving Recommender Systems," Expert Systems with Applications, 28(2), pp.189-199, 2005.
    [41]Nichols, D.M., "Implicit Rating and Filtering," Fifth DELOS Workshop on Filtering and Collaborative Filtering, Budapest, Hungary, 1997.
    [42]Good, N., Schafer, J. B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., and Riedl, J., "Combining Collaborative Filtering with Personal Agents for Better Recommendations," Proceedings of the 16th National Conference on Artificial Intelligence (AAAI-99), Menlo Park, CA, pp.439~446, 1999.
    [43]Park, C. W., and Lessig, V. P., "Students and Housewives: Differences in Susceptibility to Reference Group Influence," Journal of Consumer Research, (4), pp.102, 1977.
    [44]Powell, M. J. D. "Approximation Theory and Methods," Cambridge University Press, 1981.
    [45]Pine II, B. J., Peppers, D., and Rogers, "Do You Want to You’re Your Customer Forever?," Harvard Business Review, pp.103-114, 1995.
    [46]Palme, J., "Choice in the Implementation of Rating," Fifth DELOS Workshop on Filtering and Collaborative Filtering, Budapest, Hungary, 1997.
    [47]Rich, E., "User Modeling via Stereotypes," Cognitive Science, 3(4), pp.329-354, 1979.
    [48]Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P., and Riedl, J., "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Proceedings of the 1994 Computer Supported Collaborative Work Conference, 1994.
    [49]Resnick, P., "Recommender systems," Association for Computing Machinery. Communications of the ACM, New York, Vol.40, Iss.3, pp.56-58, 1997.
    [50]Raje, S., Mukhopadhyay, M., Boyles, N., Patel, J., Mostafa, "D-SIFTER: A Collaborative Information Classifier," Proc. of Information, Communications and Signal Processing, vol. 2, pp.820-824, 1997.
    [51]Rashid, A. M., I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Konstan, and J. Riedl., "Getting to Know You: Learning New User Preferences in Recommender Systems," In Proceedings of the International Conference on Intelligent User Interfaces, 2002.
    [52]Salton, G., "Automatic Text Processing," Addison-Wesley, 1989.
    [53]Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J., "Analysis of Recommender Algorithms for E-Commerce," ACM E-Commerce 2000 Conference, 2000.
    [54]Schafer, J.B., Konstan, J., and Riedl, J., "Electronic Commerce Recommender Applications," Journal of Data Mining and Knowledge Discovery, vol. 5 nos. 1/2, pp.115-152, 2000.
    [55]Tanimoto, J., & H. Fujii., "A study on diffusion characteristics of information on a human network analyzed by a Multi-Agent simulator," The Social Science Journal, 40(3), pp.479-485, 2003.
    [56]Shardanand, U. and Maes, P., "Social Information Filtering: Algorithms for Automating Word of Mouth," ACM Conference on Computer Human Interaction (CHI), pp.210~217, 1995.
    [57]Zhan, J., Hsieh C. L., Wang I. C., "Privacy-Preserving Collaborative Recommender systems," IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(4), pp.472-476, 2010.

    無法下載圖示 校內:2017-09-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE