| 研究生: |
陳嘉文 Chen, Chia-Wen |
|---|---|
| 論文名稱: |
生物相容性共聚物之製備及其在皮質固醇包覆上應用之探討 A study on the preparation of biocompatible copolymer and its application in carrying hydrocortisone |
| 指導教授: |
許梅娟
Hsu, Mei-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 乳酸甘胺酸共聚物 、多孔膜 、藥物包覆 、皮質固醇 |
| 外文關鍵詞: | foam, copolymer, hydrocortisone |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乳酸甘胺酸共聚物 (PLGA) 由於具備生物相容性 (biocompatible) 與生物可劣解 (biodegradable) 等特性,因此能廣泛地應用在手術縫線、骨折癒合、組織工程及藥物釋放控制等方面。本研究中針對合成之乳酸甘胺酸共聚物的製備、物理性質與合成條件進行了一系列的探討,並將此合成製備之產物應用在多孔膜 (foam) 的製備與藥物的包覆上。
本研究中主要探討的主題有三方面:一為乳酸甘胺酸共聚物的製備及其性質之鑑定,合成之產物具有高純度且重量產率介於88-94% 之間,再者為在不同操作條件下以合成之共聚物製備多孔膜並歸納出最佳的製備條件,產物的形狀完整且表面孔洞均勻分散,其三則為包覆皮質固醇 (hydrocortisone) 之PLGA microspheres的製備,並對其製備程序、產物特性及藥物包覆的能力一一進行探討,包覆皮質固醇之PLGA microspheres最高可達50% 藥物含量。
PLGA can be widely used in sutures, fracture fixation, tissue engineering, and drug control/release because of its compatibility and biodegradation.
In this work, PLGA is successfully synthesized. PLGA of very high purity can be obtained with the yield of 88-94%. Its physical properties as well as the synthesis condition are discussed. The copolymer formed is applied to the preparation of porous foams and hydrocortisone-contained microspheres. The optimum condition for pre- paring porous foams is determined and an uniform foam of good shape is produced. For hydrocortisone-carried PLGA microspheres the preparation process, characteristic of the microspheres, and amount of drug being carried are all investigated. The maximum drug content of 50% can be achieved.
參考文獻
1. D. Muster, Biomaterials-Hard Tissue Repair and Replacement, Elsevier Science Publishers, North-Holland, pp. 223-306, 1992.
2. D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage”, Biomaterials, 21, pp. 2529-2543, 2000.
3. J. O. Hollinger, B. S. Jamiolkowski and S. W. Shalaby, Biomedical Applications of Synthetic Biodegradable Polymers, CRC Press, pp. 197-222, 1995.
4. D. L. Wise, Encyclopedic Handbook of Biomaterials and Bioengineering Part A: Materials, Marcel Dekker, pp. 1015-1054, 1995.
5. D. K. Gilding and A. M. Reed, “Biodegradable polymers for use in surgery- polyglycolic/poly(lactic acid) homo- and copolymers: 1”, Polymer, 20, pp. 1459-1464, 1979.
6. J. W. Leenslag and A. J. Pennings, “Synthesis of high-molecular-weight poly(L-lactide) initiated with tin 2-ethylhexanoate”, Makromolecule Chemistry, 188, pp. 1809-1814, 1997.
7. D. Bendix, “Chemical synthesis of polylactide and its copolymers for medical applications”, Polymer Degradation and Stability, 59, pp. 129-135, 1998.
8. E. Chiellini, P. Giusti, C. Migliaresi and L. Nicolais, Polymers In Medicine– Biomedical and Pharmaceutical Applications, Plenum Press, New York, pp. 263-275, 1986.
9. J. Dahlmann, G. Rafler, K. Fechner and B. Mehlis, “Synthesis and properties of biodegradable aliphatic polyesters”, British Polymer Journal, 23, pp. 235-240, 1990.
10. F. E. Kohn, J. G. Ommen and J. Feijen, “The mechanism of the ring-opening polymerization of lactide and glycolide”, European Polymer Journal, 19, pp. 1081-1088, 1983.
11. D. W. Grijpma, A. J. Nijenhuis and A. J. Pennings, “Synthesis and hydrolytic degradation behavior of high-molecular-weight L-lactide and glycolide copolymers”, Polymer, 31, pp. 2201-2206, 1990.
12. V. R. Gowariker, N. V. Viswanathan and J. Sreedhar, Polymer Science, Wiley Press, pp. 71-85, 1988.
13. M. Ramchandani, M. Pankaskie and D. Robinson, “The influence of manufacturing procedure on the degradation of poly(lactide-co-glycolide) 85:15 and 50:50 implants”, Journal of Controlled Release, 43, pp.161-173, 1997.
14. D. K. Gilding and A. M. Reed, “Biodegradable polymers for use in surgery- poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation”, Polymer, 22, pp. 494-498, 1981.
15. R. A. Kenley, M. O. Lee, T. R. Mahoney and L. M. Sanders, “Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro”, Macromolecules, 20, pp. 2398-2403, 1987.
16. C. Shih, N. Waldron and G. M. Zentner, “Quantitative analysis of ester linkages in poly(DL-lactide) and poly(DL-lactide-co-glycolide)”, Journal of Controlled Release, 38, pp. 69-73, 1996.
17. M. Dunne, O. I. Corrigan and Z. Ramtoola, “Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles”, Biomaterials, 21, pp. 1659-1668, 2000.
18. J. M. Brady, D. E. Cutright, R. A. Miller and G. C. Battistone, “Resorption rate, route of elimination and ultrastructure of the implant site of poly(lactic acid) in the abdominal wall of the rat”, Journal of Biomedical Materials Research, 7, pp. 155-166, 1982.
19. H. Kobayashi, S. H. Hyon and Y. Ikada, “Water-curable and biodegradable prepolymers”, Journal of Biomedical Materials Research, 25, pp. 1481-1487, 1991.
20. J. W. Leenslag, A. J. Pennings, R. M. Bos, F. R. Rozema and G. Boering, “Resorbable materials of poly(L-lactide)”, Biomaterials, 8, pp. 311-314, 1987.
21. P. Rokkanen, J. Kilpikari and J. Laiho, “Biodegradable implants in fracture fixation: early results of treatment of fractures of the ankle”, The Lancet, 22, pp. 1422-1424, 1985.
22. J. W. Leenslag, A. J. Pennings, R. M. Bos, F. R. Rozema and G. Boering, “Resorbable materials of poly(lactide) plates and screws for internal fracture fixation”, Biomaterials, 8, pp. 70-73, 1987.
23. A. A. Ignatius and L. E. Claes, “In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide)”, Biomaterials, 17, pp. 831-839, 1996.
24. J. O. Hollinger, “Preliminary report on the osteogenic potential of a biodegradable copolymer of polylactide (PLA) and polyglycolide (PGA)”, Journal of Biomedical Materials Research, 17, pp. 71-79, 1983.
25. T. J. Yu and C. C. Chu, “Bicomponent vascular grafts consisting of synthetic absorbable fibers. 1. in vitro study”, Journal of Biomedical Materials Research, 27, pp. 1329-1339, 1993.
26. D. Cohn, Z. Elchai, B. Gershon, M. Karck, G. Lazarovici, J. Sela, M. Chandra, G. Marom and G. Uretzky, “Introducing a selectively biodegradable filament wound arterial prosthesis: a short-term implantation study”, Journal of Biomedical Materials Research, 26, pp. 1185-1205, 1992.
27. H. J. Hoppen, J. W. Leenslag, A. J. Pennings, V. D. Lei and P. H. Robinson, “Two-ply biodegradable nerve guide: basic aspects or design, construction and biological performance”, Biomaterials, 11, pp. 286-290, 1990.
28. H. Molander, O. Engkvist, J. Hagglund, Y. Olsson and E. Torebjork, “Nerve repair using a polyglactin tube and nerve graft: an experimental study in the rabbit”, Biomaterials, 4, pp. 276-280, 1983.
29. C. E. Holy, C. Cheng, J. E. Davis and M. S. Shoichet, “Optimizing the sterilization of PLGA scaffolds for use in tissue engineering”, Biomaterials, 22. pp. 25-31, 2000.
30. A. Engwicht, U. Girreser and B. W. Muller, “Critical properties of lactide-co-glycolide polymers for the use in microparticle preparation by the aerosol solvent extraction system”, International Journal of Pharmaceutics, 185, pp. 61-72, 1999.
31. A. Engwicht, U. Girreser and B. W. Muller, “Characterization of copolymers of lactic and glycolic acid for supercritical fluid processing”, Biomaterials, 21, pp. 1587-1593, 2000.
32. L. R. Beck, D. R. Cowsar, D. H. Lewis, J. W. Gibson and C. E. Flowers, “New long-acting injectable microcapsule contraceptive system”, American Journal of Obstetrics and Gynecology, 135, pp. 419-425, 1979.
33. H. Jeffery, S. S. Davis and D. T. O’Hagan, “The preparation and characterization of poly(lactide-co-glycolide) microparticles: oil-in-water emulsion solvent evaporation”, International Journal of Pharmaceutics, 77, pp. 169-175, 1991.
34. R. C. Mehta, B. C. Thanoo and P. P. DeLuca, “Peptide containing microspheres from low molecular weight and hydrophilic poly(D,L-lactide-co-glycolide)”, Journal of Controlled Release, 41, pp. 249-257, 1996.
35. M. Ramchandani and D. Robinson, “In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants”, Journal of Controlled Release, 54, pp. 167-175, 1998.
36. H. Jeffery, S. S. Davis and D. T. O’Hagan, “The preparation and characterization of poly(lactide-co-glycolide) microparticles: the entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique”, Pharmaceutical Research, 10, pp. 362-368, 1993.
37. Y. Ogawa, H. Okada, T. Heya and T. Shimamoto, “Controlled release of LHRH agonist, leuprolide acetate from microcapsules: serum drug level profiles and pharmacological effect of animals”, Journal of Pharmacy and Pharmacology, 41, pp. 439-444, 1989.
38. O. Ike, Y. Shimizu, R. Wanda, S. H. Hyon and Y. Ikada, “Controlled cisplatin delivery system using poly(D,L-lactic acid)”, Biomaterials, 13, pp. 230-234, 1992.
39. R. Bodmeier and H. Chen, “Preparation of biodegradable polylactide microparticles using a spray-drying technique”, Journal of Pharmacy and Pharmacology , 40, pp. 754-757, 1988.
40. L. M. Sanders, B. A. Kell, G. I. Mcrae and G. W. Whitehead, “Prolonged controlled-release of nafarelin, a luteinizing hormone-releasing hormone analogue, from biodegradable polymeric implants: influence of composition and molecular weight of polymer”, Journal of Pharmaceutical Sciences, 75, pp. 350-360, 1986.
41. T. G. Park, S. Cohen and R. Langer, “Controlled protein release from polyethyleneimine-coated poly(L-lactic acid) pluronic blend matrices”, Pharmaceutical Research, 9, pp. 37-39, 1992.
42. H. Murakami, M. Kobayashi, H. Takeuchi and Y. Kawashima, “Utilization of poly(DL-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression”, Journal of Controlled Release, 67, pp. 29-36, 2000.
43. R. Bodmeier and H. Chen, “Evaluation of biodegradable poly(lactide) pellets prepared by direct compression”, Journal of Pharmaceutical Sciences, 78, pp. 819-822, 1989.
44. J. F. Fitzgerald and O. I. Corrigan, “Investigation of the mechanisms governing the release of levamisole from poly-lactide-co-glycolide delivery systems”, Journal of Controlled Release, 42, pp. 125-132, 1996.
45. J. H. Jeong, D. W. Lim, D. K. Han and T. G. Park, “Synthesis, characterization and protein adsorption behaviors of PLGA/PEG di-block co-polymer blend films”, Colloids and Surfaces B: Biointerfaces, 18, pp. 371-379, 2000.
46. A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao and R. Langer, “Preparation and characterization of poly(L-lactide) foams”, Polymer, 35, pp. 1068-1077, 1994.
47. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti and R. Langer, “Laminated three-dimensional biodegradable foams for use in tissue-engineering”, Biomaterials, 14, pp. 323-330, 1993.
48. J. H. Aubert and R. L. Clough, “Low-density, microcellular polystyrene foams”, Polymer, 26, pp. 2047-2051, 1985.
49. K. Whang, C. H. Thomas and K. E. Healy, “A novel method to fabricate bioresorbable scaffolds”, Polymer, 36, pp. 837-842, 1995.
50. C. E. Holy, S. M. Dang, J. E. Davies and M. S. Shoichet, “In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam”, Biomaterials, 20, pp. 1177-1185, 1999.