| 研究生: |
魏俞仲 Wei, Yu-Chung |
|---|---|
| 論文名稱: |
氧化銦鎵光感測器與乙醇氣體感測器之研究 Investigation of InGaO Photodetector and Ethanol Gas Sensor |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 共同指導教授: |
陳志方
Chen, Jone-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 共靶 、單靶 、氧化銦鎵 、氣體感測器 、紫外光感測器 |
| 外文關鍵詞: | Co-sputtering, Single-target, InGaO, Ultraviolet Photodetector, Gas Sensor |
| 相關次數: | 點閱:88 下載:27 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用射頻磁控濺鍍系統去沈積氧化銦鎵薄膜當作感測層,透過不同的銦摻雜和不同的通氧量去探討對薄膜的影響,然後將其應用在紫外光感測器和乙醇氣體感測器。
首先,我們以共靶與單靶的方式去沈積氧化銦鎵薄膜,為了探討不同銦摻雜和不同通氧量對薄膜的影響,穿透被用來分析薄膜的光學特性,AFM,EDS,以及XPS被用來分析薄膜的物理及化學特性。由穿透分析得知銦摻雜越多,能帶就越小,導電性也會增加。由AFM得知通氧量越多粗糙度數值越低,薄膜表面越平滑品質更好。由EDS得知氧化銦靶材功率提高,銦鎵比提高,銦的摻雜變多。由XPS得知銦摻雜變多的時候氧空缺變多,通氧量變多的時候氧空缺變少。
接著製備共靶式的氧化銦鎵紫外光感測器,氧化鎵的靶材功率固定在80W,調變氧化銦的靶材功率分別為20W,30W,40W,以及80W。純氧化鎵的暗電流過小不易量測,純氧化銦及80W/80W的暗電流都過大超過機台的量測範圍(100mA)。經過一系列的測量得知,當摻雜銦變多的時候1.暗電流會上升、2.靈敏度上升,在30W/80W的時候達到最大值5.20x103、3.光響應也上升,在40W/80W的時候達到最大值1.72x102 A/W、4.響應恢復時間則會上升。過多的銦摻雜則會造成1.暗電流過大、2.靈敏度下降、3.響應恢復時間下降。
接著製備共靶式的氧化銦鎵乙醇氣體感測器,氧化鎵的靶材功率固定在80W,調變氧化銦的靶材功率分別為40W,60W,以及80W。所有元件的響應都隨著溫度提高而上升,達到最佳溫度然後下降。當銦摻雜變多的時候1.阻值變小、2.響應變大,在60W/80W 300℃下量側達到最大值80.6%。當銦摻雜過多的時候,電流過大響應變小。響應恢復時間在最佳參數60W/80W 300℃量側下為8s/28s。
最後由於單靶比共靶有著更簡單的製程及更好的穩定性,我們也製備了單靶式的氧化銦鎵乙醇氣體感測器。使用IGO (4:6)及IGO (6:4),分別在通氧量0%,4%,及10%的環境下製備。IGO (4:6)的元件由於鎵摻雜太多,阻值過大,不能量到完整的數據,所以後來也量測銦摻雜較多的IGO (6:4)。IGO (6:4)所有元件的響應也都隨著溫度提高而上升,達到最佳溫度然後下降。響應也隨著通氧量變多而上升,在10% 260℃的量測下達到最大值89.2%,響應恢復時間在最佳參數下也有7s/44s。兩種最佳參數元件也有好的重複性及氣體選擇性。
In this study, an RF magnetron sputtering system was used to deposit indium gallium oxide (IGO) thin films as the sensing layer. The influence of different indium doping and oxygen flow rates on the film properties was investigated. Subsequently, the IGO thin films were applied in ultraviolet (UV) photodetectors and ethanol gas sensors.
First, we deposited indium gallium oxide (IGO) thin films using both co-sputtering and single-target methods. To investigate the effects of different indium doping levels and oxygen flow rates on the films, various analytical techniques were employed. Transmittance analysis was conducted to study the optical properties of the films, while AFM (Atomic Force Microscopy), EDS (Energy-Dispersive X-ray Spectroscopy), and XPS (X-ray Photoelectron Spectroscopy) were used to analyze the physical and chemical characteristics of the films.
Transmittance analysis revealed that increasing indium doping led to a decrease in the bandgap and an increase in conductivity. AFM analysis showed that higher oxygen flow rates resulted in lower roughness values, indicating smoother and higher-quality film surfaces. EDS analysis indicated that increasing the power of the indium oxide target resulted in a higher indium-to-gallium ratio, leading to higher indium doping. XPS analysis revealed that higher indium doping led to an increase in oxygen vacancies, while higher oxygen flow rates resulted in a decrease in oxygen vacancies.
Next, we fabricated co-sputtered indium gallium oxide (IGO) ultraviolet (UV) photodetectors. The power of the gallium oxide target was fixed at 80W, while the power of the indium oxide target was varied at 20W, 30W, 40W, and 80W. The dark current of pure gallium oxide was too low to measure accurately, while pure indium oxide and 80W/80W exhibited dark currents exceeding the measurement range of the equipment (100mA). Through a series of measurements, the following observations were made: As the indium doping increased: 1. the dark current increased. 2. The sensitivity of the photodetector increased, reaching its maximum value of 5.20x103 at 30W/80W. 3. The responsivity increased, peaking at 1.72x102 A/W at 40W/80W. 4. The response recovery time increased. Excessive indium doping resulted in the following effects: 1. The dark current became excessively high. 2. The sensitivity decreased. 3. The response recovery time decreased.
Next, co-sputtered indium gallium oxide (IGO) ethanol gas sensors were fabricated, with the power of the gallium oxide target fixed at 80W and the power of the indium oxide target varied at 40W, 60W, and 80W. The response of all devices increased with increasing temperature, reaching an optimum temperature, and then decreasing. When the indium doping increased, the following effects were observed: 1. The resistance decreased. 2. The response increased, reaching its maximum value of 80.6% at 60W/80W and 300°C. However, when the indium doping exceeded a certain level, the current became too high, resulting in a decrease in the response. The response recovery time for the optimal parameters of 60W/80W and 300°C was 8s/28s.
Finally, to simplify the fabrication process and improve stability, we also prepared single-target indium gallium oxide (IGO) ethanol gas sensors. Two targets, IGO (4:6) and IGO (6:4), were prepared under different oxygen flow rates of 0%, 4%, and 10%. However, the IGO (4:6) devices, due to excessive gallium doping, had high resistance and incomplete data acquisition. Therefore, the measurements were focused on the IGO (6:4) devices with higher indium doping. For the IGO (6:4) devices, the response increased with increasing temperature, reached an optimum temperature, and then decreased. Additionally, the response increased with higher oxygen flow rates, reaching its maximum value of 89.2% at 10% oxygen flow rate and 260°C. The response recovery time for the optimal parameters was 7s/44s. Both sets of optimal parameter devices exhibited good repeatability and gas selectivity.
[1] P. Salimi kuchi, H. Roshan, M.H. Sheikhi, A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties, J Alloys Compd. 816 (2020) 152666. https://doi.org/10.1016/j.jallcom.2019.152666.
[2] K. Mitsubayashi, H. Matsunaga, G. Nishio, S. Toda, Y. Nakanishi, Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking, Biosens Bioelectron. 20 (2005) 1573–1579. https://doi.org/10.1016/j.bios.2004.08.007.
[3] S.-W. Lee, S.-H. Cha, K.-J. Choi, B.-H. Kang, J.-S. Lee, S.-W. Kim, J.-S. Kim, H.-M. Jeong, S.-A. Gopalan, D.-H. Kwon, S.-W. Kang, Low Dark-Current, High Current-Gain of PVK/ZnO Nanoparticles Composite-Based UV Photodetector by PN-Heterojunction Control, Sensors. 16 (2016) 74. https://doi.org/10.3390/s16010074.
[4] J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy, Appl Phys Lett. 98 (2011). https://doi.org/10.1063/1.3555439.
[5] Y.N. Hou, Z.X. Mei, H.L. Liang, C.Z. Gu, X.L. Du, Monolithic color-selective ultraviolet (266–315 nm) photodetector based on a wurtzite MgxZn1−xO film, Appl Phys Lett. 105 (2014). https://doi.org/10.1063/1.4897300.
[6] J. Yu, C.X. Shan, X.M. Huang, X.W. Zhang, S.P. Wang, D.Z. Shen, ZnO-based ultraviolet avalanche photodetectors, J Phys D Appl Phys. 46 (2013) 305105. https://doi.org/10.1088/0022-3727/46/30/305105.
[7] Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li, O2 and CO sensing of Ga2O3 multiple nanowire gas sensors, Sens Actuators B Chem. 129 (2008) 666–670. https://doi.org/10.1016/j.snb.2007.09.055.
[8] T. Schwebel, M. Fleischer, H. Meixner, C.-D. Kohl, CO-Sensor for domestic use based on high temperature stable Ga2O3 thin films, Sens Actuators B Chem. 49 (1998) 46–51. https://doi.org/10.1016/S0925-4005(97)00334-1.
[9] J. Sheng, E.J. Park, B. Shong, J.-S. Park, Atomic Layer Deposition of an Indium Gallium Oxide Thin Film for Thin-Film Transistor Applications, ACS Appl Mater Interfaces. 9 (2017) 23934–23940. https://doi.org/10.1021/acsami.7b04985.
[10] M. Fleischer, H. Meixner, Gallium oxide thin films: A new material for high-temperature oxygen sensors, Sens Actuators B Chem. 4 (1991) 437–441. https://doi.org/10.1016/0925-4005(91)80148-D.
[11] M. Ogita, N. Saika, Y. Nakanishi, Y. Hatanaka, Ga2O3 thin films for high-temperature gas sensors, Appl Surf Sci. 142 (1999) 188–191. https://doi.org/10.1016/S0169-4332(98)00714-4.
[12] R.L. Weiher, R.P. Ley, Optical Properties of Indium Oxide, J Appl Phys. 37 (1966) 299–302. https://doi.org/10.1063/1.1707830.
[13] D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO 2 down to ppb Levels Using Individual and Multiple In 2 O 3 Nanowire Devices, Nano Lett. 4 (2004) 1919–1924. https://doi.org/10.1021/nl0489283.
[14] S.S. Farvid, T. Wang, P. V. Radovanovic, Colloidal Gallium Indium Oxide Nanocrystals: A Multifunctional Light-Emitting Phosphor Broadly Tunable by Alloy Composition, J Am Chem Soc. 133 (2011) 6711–6719. https://doi.org/10.1021/ja111514u.
[15] B.L. Diffey, Sources and measurement of ultraviolet radiation, Methods. 28 (2002) 4–13. https://doi.org/10.1016/S1046-2023(02)00204-9.
[16] X.C. Guo, N.H. Hao, D.Y. Guo, Z.P. Wu, Y.H. An, X.L. Chu, L.H. Li, P.G. Li, M. Lei, W.H. Tang, β -Ga 2 O 3 / p -Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity, J Alloys Compd. 660 (2016) 136–140. https://doi.org/10.1016/j.jallcom.2015.11.145.
[17] G.C. Hu, C.X. Shan, N. Zhang, M.M. Jiang, S.P. Wang, D.Z. Shen, High gain Ga_2O_3 solar-blind photodetectors realized via a carrier multiplication process, Opt Express. 23 (2015) 13554. https://doi.org/10.1364/OE.23.013554.
[18] D.L. Jiang, L. Li, H.Y. Chen, H. Gao, Q. Qiao, Z.K. Xu, S.J. Jiao, Realization of unbiased photoresponse in amorphous InGaZnO ultraviolet detector via a hole-trapping process, Appl Phys Lett. 106 (2015). https://doi.org/10.1063/1.4918991.
[19] H. Shen, C.X. Shan, B.H. Li, B. Xuan, D.Z. Shen, Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors, Appl Phys Lett. 103 (2013). https://doi.org/10.1063/1.4839495.
[20] Q. Wang, J. Chen, P. Huang, M. Li, Y. Lu, K.P. Homewood, G. Chang, H. Chen, Y. He, Influence of growth temperature on the characteristics of β-Ga2O3 epitaxial films and related solar-blind photodetectors, Appl Surf Sci. 489 (2019) 101–109. https://doi.org/10.1016/j.apsusc.2019.05.328.
[21] T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A New Detector for Gaseous Components Using Semiconductive Thin Films., Anal Chem. 34 (1962) 1502–1503. https://doi.org/10.1021/ac60191a001.
[22] P.B. Weisz, Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis, J Chem Phys. 21 (1953) 1531–1538. https://doi.org/10.1063/1.1699292.
[23] D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, W. Tang, Fabrication of β-Ga_2O_3 thin films and solar-blind photodetectors by laser MBE technology, Opt Mater Express. 4 (2014) 1067. https://doi.org/10.1364/OME.4.001067.
[24] Shun Lien Chuang, Physics of Photonic Devices, 2nd Edition, Willey: Hoboken. (2012).
[25] J. Hetterich, G. Bastian, N.A. Gippius, S.G. Tikhodeev, G. von Plessen, U. Lemmer, Optimized Design of Plasmonic MSM Photodetector, IEEE J Quantum Electron. 43 (2007) 855–859. https://doi.org/10.1109/JQE.2007.902934.
[26] X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, Y. Xie, High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite, Adv Funct Mater. 24 (2014) 7373–7380. https://doi.org/10.1002/adfm.201402020.
[27] A.S.M. Iftekhar Uddin, D.-T. Phan, G.-S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid, Sens Actuators B Chem. 207 (2015) 362–369. https://doi.org/10.1016/j.snb.2014.10.091.
[28] M. TAKATA, D. TSUBONE, H. YANAGIDA, Dependence of Electrical Conductivity of ZnO on Degree of Sintering, Journal of the American Ceramic Society. 59 (1976) 4–8. https://doi.org/10.1111/j.1151-2916.1976.tb09374.x.
[29] Y.K. Gautam, K. Sharma, S. Tyagi, A.K. Ambedkar, M. Chaudhary, B. Pal Singh, Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: progress and challenges, R Soc Open Sci. 8 (2021) rsos.201324. https://doi.org/10.1098/rsos.201324.
[30] S. Navale, M. Shahbaz, A. Mirzaei, S.S. Kim, H.W. Kim, Effect of Ag Addition on the Gas-Sensing Properties of Nanostructured Resistive-Based Gas Sensors: An Overview, Sensors. 21 (2021) 6454. https://doi.org/10.3390/s21196454.
[31] Li-Yang Chang, Investigation of Indium Gallium Oxide Thin Film Fabricated by RF Sputtering System and Their Applications, Master D.Thesis, NCKU. (2017).
[32] A. VAN DER ZIEL, Noise in solid state devices and circuits, Wiley-Interscience. (1986).
[33] D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, T.C. Collins, W. Harsch, G. Cantwell, Neutral-donor–bound-exciton complexes in ZnO crystals, Phys Rev B. 57 (1998) 12151–12155. https://doi.org/10.1103/PhysRevB.57.12151.
[34] D.A. NEAMEN, Semiconductor physics and devices: basic Principles, McGraw-Hill. (2003).
[35] Matt Hughes, What is E-Beam Evaporation?, SEMICORE. (2016).
[36] S. Gonda, T. Doi, T. Kurosawa, Y. Tanimura, N. Hisata, T. Yamagishi, H. Fujimoto, H. Yukawa, Real-time, interferometrically measuring atomic force microscope for direct calibration of standards, Review of Scientific Instruments. 70 (1999) 3362–3368. https://doi.org/10.1063/1.1149920.
[37] D.B.; C.C.B. WILLIAMS, The transmission electron microscope In: Transmission electron microscopy, Springer, Boston, MA. (1996) 3–17.
[38] S. Han, Z. Zhang, J. Zhang, L. Wang, J. Zheng, H. Zhao, Y. Zhang, M. Jiang, S. Wang, D. Zhao, C. Shan, B. Li, D. Shen, Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0.52Zn0.48O thin film, Appl Phys Lett. 99 (2011). https://doi.org/10.1063/1.3670334.
[39] J.H.G.D.L.Q.G.C.W. and X.Z. H. Chen, ACS Appl. Mater, Interfaces (Providence). (2017) 4692–4700.
[40] B. Panigrahy, M. Aslam, D. Bahadur, Controlled optical and magnetic properties of ZnO nanorods by Ar ion irradiation, Appl Phys Lett. 98 (2011). https://doi.org/10.1063/1.3574772.
[41] Y.G.X.W.G.J.Z.Z. and H.L. J. Liu, Sensors, (2017) 1852–1878.
[42] K.-Y. Chen, C.-C. Yang, Y.-K. Su, Z.-H. Wang, H.-C. Yu, Impact of Oxygen Vacancy on the Photo-Electrical Properties of In2O3-Based Thin-Film Transistor by Doping Ga, Materials. 12 (2019) 737. https://doi.org/10.3390/ma12050737.
[43] T. Rakshit, I. Manna, S.K. Ray, Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films, J Appl Phys. 117 (2015). https://doi.org/10.1063/1.4905835.
[44] H. Mahmoudi Chenari, R. Zamiri, D. Maria Tobaldi, M. Shabani, A. Rebelo, J.S. Kumar, S.A. Salehizadeh, M.P.F. Graça, M.J. Soares, J. António Labrincha, J.M.F. Ferreira, Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity, J Solgel Sci Technol. 84 (2017) 274–282. https://doi.org/10.1007/s10971-017-4484-y.
[45] T.-H. Chang, S.-J. Chang, W.-Y. Weng, C.-J. Chiu, C.-Y. Wei, Amorphous Indium–Gallium–Oxide UV Photodetectors, IEEE Photonics Technology Letters. 27 (2015) 2083–2086. https://doi.org/10.1109/LPT.2015.2453317.
[46] C.-H. Lin, R.-S. Chen, T.-T. Chen, H.-Y. Chen, Y.-F. Chen, K.-H. Chen, L.-C. Chen, High photocurrent gain in SnO2 nanowires, Appl Phys Lett. 93 (2008). https://doi.org/10.1063/1.2987422.
[47] S. Lany, A. Zunger, Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors, Phys Rev B. 72 (2005) 035215. https://doi.org/10.1103/PhysRevB.72.035215.
[48] N.D. Chinh, T.T. Hien, L. Do Van, N.M. Hieu, N.D. Quang, S.-M. Lee, C. Kim, D. Kim, Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration, Sens Actuators B Chem. 281 (2019) 262–272. https://doi.org/10.1016/j.snb.2018.10.113.
[49] Y.F. Cui, W. Jiang, S. Liang, L.F. Zhu, Y.W. Yao, MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties, J Mater Chem A Mater. 6 (2018) 14930–14938. https://doi.org/10.1039/C8TA00269J.
[50] G. Korotcenkov, M. Ivanov, I. Blinov, J.R. Stetter, Kinetics of indium oxide-based thin film gas sensor response: The role of “redox” and adsorption/desorption processes in gas sensing effects, Thin Solid Films. 515 (2007) 3987–3996. https://doi.org/10.1016/j.tsf.2006.09.044.
[51] J.-C. Jian, Y.-C. Chang, S.-P. Chang, S.-J. Chang, High Response of Ethanol Gas Sensor Based on NiO-Doped Apple Pectin by the Solution Process, Coatings. 11 (2021) 1073. https://doi.org/10.3390/coatings11091073.
[52] Z. Wang, Z. Tian, D. Han, F. Gu, Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO, ACS Appl Mater Interfaces. 8 (2016) 5466–5474. https://doi.org/10.1021/acsami.6b00339.
[53] Y.G.X.W.G.J.Z.Z. and H.L. J. Liu, Sensors, (2017) 1852–1878.
[54] Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, Ultrasensitive Hydrogen Sensor Based on Pd 0 -Loaded SnO 2 Electrospun Nanofibers at Room Temperature, ACS Appl Mater Interfaces. 5 (2013) 2013–2021. https://doi.org/10.1021/am3028553.
[55] S. Ghosh, C. RoyChaudhuri, R. Bhattacharya, H. Saha, N. Mukherjee, Palladium–Silver-Activated ZnO Surface: Highly Selective Methane Sensor at Reasonably Low Operating Temperature, ACS Appl Mater Interfaces. 6 (2014) 3879–3887. https://doi.org/10.1021/am404883x.
[56] H.B. Kim, H.S. Lee, Effect of Mg addition on the electrical characteristics of solution-processed amorphous Mg–Zn–Sn–O thin film transistors, Thin Solid Films. 550 (2014) 504–508. https://doi.org/10.1016/j.tsf.2013.10.116.
[57] H. Chen, J. Hu, G.-D. Li, Q. Gao, C. Wei, X. Zou, Porous Ga–In Bimetallic Oxide Nanofibers with Controllable Structures for Ultrasensitive and Selective Detection of Formaldehyde, ACS Appl Mater Interfaces. 9 (2017) 4692–4700. https://doi.org/10.1021/acsami.6b13520.
[58] S. Carrasco, Metal-Organic Frameworks for the Development of Biosensors: A Current Overview, Biosensors (Basel). 8 (2018) 92. https://doi.org/10.3390/bios8040092.