簡易檢索 / 詳目顯示

研究生: 何聖廷
Massimi, Heriberto Saldivar
論文名稱: 作用於太空飛行載具上之稀薄氣體及化學非平衡效應之數值研究
Numerical Study of Rarefaction Effects and Thermochemical Non-equilibrium Problems on Hypersonic Flows around Space Vehicles
指導教授: 林三益
Lin, San-Yih
共同指導教授: 溫志湧
Wen, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 86
中文關鍵詞: 納維-斯托克斯方程式超高音速流返回式直接模擬蒙地卡羅法EXPERTUNIS-UNS 程式鈍體
外文關鍵詞: Navier Stokes Equation, Hypersonic, Reentry, DSMC, EXPERT, UNIC-UNS, Blunt Body
相關次數: 點閱:108下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討太空飛行器之空氣熱動力學的問題,該飛行器具有圓形 前緣,且飛行速度在超高音速範疇內。首先利用自家的 Navier- Stokes 解子, UNIS-UNS 程式,配合使用滑動邊界條件來模擬通過有球形鼻尖之圓柱。為驗證 本程式之正確性,在不同之努森數(Knusen number)和馬赫數(Mach number)條件 下,本程式的結果與 DSMC 法之結果做比較,獲致良好的一致性。其次,本研 究模擬了超高音速流通過歐洲實驗性太空艙(EXPERT),此流場範疇廣泛,含蓋 了太空艙降落時軌道之流場,並具有空氣膨脹時及熱化學的非化學平衡性質。 在考慮到飛行在超高音速時,空氣之解離及其對流場結構、氣動力和熱負載的 影響,針對完整之太空梭,本研究採用了三維計算流體力學(CFD)的分析。該分 析是未來研究之先導,並提供了科學領域之量化數據,可以做為改進超高音速 飛行器之設計參考。

    The present work focuses on the problem of aerothermodynamics of space vehicles with rounded edges on the hypersonic segment of the flight trajectory. Firstly, the in-house Navier-Stokes solver, UNIC-UNS code, with the slip boundary condition is used to simulate the flows around a spherical- nosed cylinder at different Knudsen numbers and Mach numbers, and compared with DSMC computations for validation. The Navier-Stokes simulations are in good agreement with that of DSMC. The hypersonic flows over the European eXPErimental Re-entry Test-bed (EXPERT) model are then simulated for a wide range of flow regimes, which correspond to the expected descent trajectory with allowance for rarefaction and thermochemical nonequilibrium. Three dimensional CFD analyses are presented for the complete geometry of the capsules considering the air dissociation and its effects on the flow structure and on the force and thermal loads for the hypersonic segment of the flight as a precursor to the future studies and to provide the scientific community with quality data that can be used to improve tools for the design of hypersonic vehicles.

    ABSTRACT IN CHINESE............3 ABSTRACT ............4 ACKNOWLEDGMENTS ............5 CONTENTS ............6 LIST OF TABLES............8 LIST OF FIGURES ............9 NOMENCLATURE.............12 CHAPTER 1 Introduction and Motivation ............15 1.1 Introduction and Motivation ............16 1.2 Reentry Flow Regime............17 1.3 EXPERT program .............21 1.4 Survey of Recent and Current Research ............22 1.5 Scope of Current Work .............23 CHAPTER 2 Simulations of Hypersonic Gas Flows: Background and Theory ............26 2.1 Introduction............27 2.2 Some Basics of Kinetic Theory............27 2.3 Equilibrium and Nonequilibrium............31 2.4 The Navier-Stokes Equations............34 2.5 Computational Code (UNIC UNS) ............35 2.6 Simulation Methods ............38 2.7 Slip and Temperature Boundary Condition ............38 2.8 Park’s Set ............39 CHAPTER 3 EXPERT Capsule ............42 3.1 EXPERT Mission............43 3.2 EXPERT Configuration............46 3.3 EXPERT Structure ............47 3.4 Ceramic nose assembly ............48 3.5 Ceramic flaps............49 3.6 Hot metallic structure ............50 3.7 Descent and landing system ............51 CHAPTER 4 Hypersonic Flow around a blunt edge and a sphere cylinder ...........53 4.1 Introduction ............54 4.2 Geometry and Computational Domain............54 4.3 Results ............56 4.4 Non-Equilibrium Effects ............61 CHAPTER 5 Hypersonic Flows around EXPERT capsule............63 5.1 Introduction ............64 5.2 Geometry and Computational Domain............65 5.3 Results ............69 5.3.1 2D Flow Field.............70 5.3.2 3D Flow Field ............75 5.3.3 Chemical reactions ............77 CHAPTER 6 Conclusions............82 REFERENCES ............ 84

    [1] Whitmore S., Dunbar B., “Orbital Space Plane, Past, Present, and Future”. AIAA International Air and Space Symposium: The Next 100 Years, Dayton, Ohio, July 14-17, 2003. AIAA-2003-2718
    [2] Hannemann, K. “Hypersonic Flight and (Re)-Entry
in Germany – Overview and Selected Projects” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 11 – 14 April 2011
The Grand Hyatt San Francisco,
San Francisco, USA
    [3] Serre, L., “Overview of Hypersonics in Europe”, 17th AIAA International Space Planes and Hypersonic Systems and Technology Conference, Sept.24-28 2012 Tours, France
    [4] Anderson, J. J. D., “Hypersonic and High-Temperature Gas Dynamics”, Second Edition, American Institute of Aeronautics and Astronautics, 2013.
    [5] Ratti et al, “EXPERT - The ESA experimental re-entry test-bed: System overview”, 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, Oct. 19-22, 2009
    [6] Vashchenkov, P.V. and Ivanov, M.S. “Numerical analysis of high altitude aerothermodynamics of Expert Re-entry vehicle” Institute of Theoretical and Applied Mechanics SB RAS, ICMAR, July 2002, Novosibirsk, Russia
    [7] Muylaert, J. M. et al: “European Experimental Reentry Testbed (Expert)”, IAC-05-2363, 2005.
    [8] Vashchenkov, P.V., Kashkovsky, A. and Ivanov, M.S. “Numerical analysis of high-altitude aerodynamics of the expert capsule”, West-East High Speed Flow Conference, November 2007, Moscow, Russia
    [9] Schettino, A. et al.: “Aerodynamic and aerothermodynamic data base of Expert capsule”, West-East High Speed Flow Conference, November 2007, Moscow, Russia
    [10] Massobrio, F., Viotto, R., Serpico, M., Sansone, A., Caporicci, M., Muylaert, J. M., “EXPERT: An atmospheric re-entry test-bed”, Acta Astronautica, Volume 60, Issue 12, June 2007, Pages 974-985, ISSN 0094-5765, http://dx.doi.org/10.1016/j.actaastro.2006.10.010.
    [11] Bondar, Ye. A., Shershnev, A.A. Kudryavtsev, A.N. Khotyanovsky, D.V., Yonemura S. and Ivanov, M.S. “Numerical Study of Hypersonic Rarefied Flows about Leading Edges of Small Bluntness”
    [12] Tchuen, G., and Zeitoun, D. E., “Effects of Chemistry in Nonequilibrium Hypersonic Flow Around Blunt Bodies,” Journal of Thermophysics and Heat Transfer, vol. 23, Jan. 2013, pp. 433–442. doi: 10.2514/1.42665
    [13] Park, C., “Assessment of two-temperature kinetic model for ionizing air”, Journal of Thermophysics and Heat Transfer, Vol.3, pp.233-244.
    [14] Bird, G.A. “Rarefied gas dynamics: Monte carlo simulation in a engineering context”. AIAA Journal, v. 74, p. 239–255, 1981. 21. doi: 10.2514/5.9781600865480.0239.0255
    [15] Chen, Y.S., Lian, Y.Y., Wu, Bill, and Wu, J.S., “Scramjet Combustor Computational Modeling”, AIAA Paper 2009-5386 (2009).
    [16] Ivanov, M., Kashkovsky, A., Gimelshein, S., Markelov, G., Alexeenko, A., Bondar, Y., Zhukova, G., Nikiforov, S., Vashenkov, P., ”SMILE system for 2D/3D DSMC computations,” Proceedings of 25th International Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia, 2006, pp. 21-28.
    [17] White, F., “Viscous Fluid Flow”, Third Edition, McGraw-Hill Mechanical Engineering.
    [18] Park, C , "Radiation Enhancement by Nonequilibrium in Earth's Atmosphere," Journal of Spacecraft and Rockets, Vol. 22, Jan.-Feb. 1985, pp. 27-36.
    [19] Gnoffo, P. A., "Three-Dimensional AOTV Flowfields in Chemical Nonequilibrium," AIAA Paper 86-0230, Jan. 1986.
    [20] Li, P. C., "Implicit Methods for Computing Chemically Reacting Flows," NASA TM 58274, Sept. 1986.
    [21] Park, C., "Problem of Rate Chemistry in the Flight Regimes of Aero assisted Orbital Transfer Vehicles," Progress in Astronautics and Aeronautics: Thermal Design of Aero assisted Orbital Transfer Vehicles, Vol. 96, edited by H. F. Nelson, AIAA, New York, 1985, pp. 511-537.
    [22] Lee, J. H., "Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles," Progress in Astronautics and Aeronautics: Thermal Design of Aeroassisted Orbital Transfer Vehicles, Vol.6,9 edited by H. F. Nelson, AIAA,New York, 1985,p
    [23] Carlson, H. A.. “Aerothermodynamic analyses of hypersonic, blunt-body flows”. Journal of Spacecraft and Rockets 36, 6 (1999), 912–915.
    [24] Candler, G. V., Nompelis, I., and Druguet, M. C. “Navier-Stokes predictions of hypersonic double-cone and cylinder-flare flow field”. AIAA Paper 2001–1024.
    [25] Boyd, I. D., Trumble, K., and Wright, M. J. “Nonequilibrium particle and continuum analyses of stardust entry for near–continuum conditions.” AIAA Paper 2007–4543.
    [26] Candler, G. V., Nijhawan, S., Bose, D., and Boyd, I. D. “A multiple translational temperature gas dynamics model”. Physics of Fluids 6, 11 (Nov. 1994), 3776–3786.
    [27] Fiscko, K. A., and Chapman, D. R. “Comparison of Burnett, Super- Burnett and Monte Carlo solutions for hypersonic shock structure”. Rarefied Gas Dynamics: Theoretical and Computational Techniques, Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Vol 118. pp. 374–395.
    [28] Rose, P. H., and Stankevics, J. O., “Stagnation-Point Heat Transfer Measurements in Partially Ionized Air,” AIAA Journal, Vol. 1, No. 12, 1963, pp. 2752–2763. doi:10.2514/3.2169
    [29] European Space Agency, “EXPERT 4.4 revision” 3rd September 2004
    [30] Online Materials Information Resource - MatWeb. Retrieved from http://www.matweb.com/index.aspx

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE