簡易檢索 / 詳目顯示

研究生: 楊傑超
Yang, Jie-Chau
論文名稱: 富氧燃燒對直接火焰型燃料電池效能之影響
Effects of Oxy-Combustion on the Performance of a Direct Flame Fuel Cell
指導教授: 王逸君
Wang, Yi-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 固體氧化物燃料電池直接火焰型燃料電池部分氧化燃料重整富氧燃燒
外文關鍵詞: Solid oxide fuel cell, Direct flame fuel cell, Partial oxidize reforming, Oxy-combustion
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功建立直接火焰型燃料電池之測試平台以及實驗程序,測試平台包含非密封之單電池堆、平火焰燃燒器、相關量測設備,並以所建立之平台探討直接火焰型燃料電池操作於富氧燃燒條件下對效能之影響。
    透過將富氧燃燒與直接火焰型燃料電池進行整合,發現將空氣中之氮氣成分以二氧化碳取代,可增加直接火焰型燃料電池之效能並增加燃料利用效率。

    A DFFC characterization system, has been developed in the present study. The system includes a single SOFC stack, a flat burner, and relevant measurement apparatus. Effects of Oxy-Combustion on the performance of DFFC system are investigated experimentally using the setup.
    The results show that: by replacing the nitrogen in the air with carbon dioxide, the performance of a DFFC system can be enhanced, and the fuel utilization efficiency.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 符號說明 IX 第一章 序論 1 1-1 前言 1 1-2研究動機 4 1-3文獻回顧 5 1-4 本文架構 15 第二章 實驗方法 16 2-1 實驗架構 16 2-2 SOFC還原程序 24 2-3燃燒產物成分定量 26 2-4 電性能量測 28 第三章 富氧燃燒對燃料重組之影響 30 3-1 火焰型態與溫度 30 3-2 停滯面氣體組成 34 第四章 一維停滯焰特性模擬 36 4-1問題描述 36 4-2統御方程式與邊界條件 37 4-3溫度與DFFC燃料 40 第五章 DFFC電性能測試 44 5-1固定總流量為4500 sccm 44 第六章 結論與未來展望 57 6-1 結論 57 6-2 未來展望 57 參考文獻 59 附錄A 孔板式質流量計校正曲線 63

    [1] Lior, N. (2011), The ECOS 2009 World Energy Panel: An introduction to the Panel and to the present (2009) situation in sustainable energy development, Energy 36, 3620-3628.
    [2] 黃炳照, 鄭銘堯. (2002) 固態氧化物燃料電池之進展. 化工技術.
    [3] 黃鎮江, 燃料電池(修訂版). 台北市: 全華科技圖書股份有限公司, 2005.
    [4] Hamann, C.H., Hamnett., A., and Vielstich, W., Electrochemistry: Wiley-VCH, 2007.
    [5] 馬承九, 燃料電池札記. 臺北市: 三民, (2008).
    [6] Liso, V., Olesen , C., Nielsen, M.P., and. Kær, S.K. (2011), Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system, Energy 36, 4216-4226.
    [7] Yuan, X.Z., Song, C., Wang, H., and Zhang, J., Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications: Springer, 2009.
    [8] Horiuchi, M., Suganuma, S., and Watanabe, M., (2004)"Electrochemical Power Generation Directly from Combustion Flame of Gases, Liquids, and Solids," Journal of The Electrochemical Society151, A1402.
    [9] 蔡大翔, 金祖永, and陳政緯. (2008) 固態氧化物燃料電池的陰極材料. 化工技術.
    [10] Vielstich, W., Gasteiger, H., and Lamm, A., Handbook of fuel cells - Fundamentals, Technology: John Wiley Reference.
    [11] 王康 and 邵宗平(2007), "单室固体氧化物燃料电池," 化学进展19.
    [12] O'Hayre, R. P.l, Cha, S.-W., and Colella, W., Fuel Cell Fundamentals: John Wiley & Sons, 2009.
    [13] 肖鋼, 燃料電池技術. 台北縣土城市: 全華圖書, 2010.
    [14] Hibino, T., Hashimoto, A., Inoue, T., Tokuno, J.-i., Yoshida, S.-i., and Sanob, M. (2000), "Single-Chamber Solid Oxide Fuel Cells at Intermediate Temperatures with Various Hydrocarbon-Air Mixtures," Journal of The Electrochemical Society, 2888-2892.
    [15] Kuhn, M. and Napporn, T.W. (2010), "Single-Chamber Solid Oxide Fuel Cell Technology—From Its Origins to Today’s State of the Art," Energies3, 57-134.
    [16] BAGOTSKY, V.S. and Bago'tskii, V.S., FuelCells Problems and Solutions: John Wiley & Sons, 2012.
    [17] Channa, K., Silva, R.D., Kaseman, B.J., and Bayless, D.J. (2011), "Silver (Ag) as anode and cathode current collectors in high temperature planar solid oxide fuel cells," Journal of HYDROGEN ENERGY36, 779-786.
    [18] Chen, Y., Wang, F., Chen, D., Dong, F., Park, H. J., Kwak, C., and Shao, Z. (2012), "Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction," Journal of Power Sources 210, 146-153,.
    [19] Rotureau, D., Viricelle, J. P., Pijolat, C., Caillol, N., and Pijolat, M. (2005), "Development of a planar SOFC device using screen-printing technology," Journal of the European Ceramic Society 25, 2633-2636.
    [20] Sasaki, K., Wurth, J. P.. Gschwend, R., Gödickemeier, M., and Gauckler, L. J., (1995)"Microstructure-Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors," Journal of The Electrochemical Society143.
    [21] Li, T. S., Wang, W. G., Miao, H., Chen, T., and Xu, C. (2010), "Effect of reduction temperature on the electrochemical properties of a Ni/YSZanode-supported solid oxide fuel cell," Journal of Alloys and Compounds, 138–143,.
    [22] Laosiripojana, N., and Assabumrungrat, S.( 2005), Catalytic dry reforming of methane over high surface area ceria, Appl. Catal. B: Environ60, 107,.
    [23] Moon, D.J., Ryu, J.W., and Lee, S.D. (2004), Carbon Dioxide Reduction Technology with SOFC System, Studies in Surface Science and Catalysis153, 193-195,.
    [24] Weinberg, F. J., Bartleet, T. G., Carleton, F. B., and Rimbotti, P.(1988), Partial oxidation of fuel rich mixtures in a spouted bed combustor, Cobustion and Flame72, 235-239,.
    [25] Bingue, J.( 2004), Optimization of hydrogen production by filtration combustion of methane by oxygen enrichment and depletion, International Journal of Hydrogen Energy29, 1365-1370,.
    [26] BRENNER, G., PICKENACKER, K., PICKENACKER, O., TRIMIS, D., WAWRZINEK, K., and WEBER, T. (2000), Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media, Cobustion and Flame123, 201-213.
    [27] Yamamoto, O. ( 1999), Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta45, 2423–2435,.
    [28] Singhal, S.C. and Kendall, K., High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Application. Kidlington: Elsevier, (2003).
    [29] Kronemayer, H., Barzan, D., Horiuchi, M., Suganuma, S., Tokutake, Y., Schulz, C., and Bessler, W. G. (2007), A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane, Journal of Power Sources166, 120-126,.
    [30] Vogler, M., Barzan, D., Kronemayer, H., Schulz, C., Horiuchi, M., Suganuma, S., Tokutake, Y., Warnatz, J., and Bessler, W. G. (2007), Direct-Flame Solid-Oxide Fuel Cell (DFFC): A Thermally Self-Sustained, Air Self- Breathing, Hydrocarbon-Operated SOFC System in a Simple, No-Chamber Setup, ECS Transactions7, 555-564.
    [31] Wang, K., Ran, R., Hao, Y., Shao, Z., Jin, W., and Xu, N. (2008), A high-performance no-chamber fuel cell operated on ethanol flame, Journal of Power Sources177, 33-39.
    [32] Sun, L., Hao, Y., Zhang, C., Ran, R., and Shao, Z. (2010), Coking-free direct-methanol-flame fuel cell with traditional nickel–cermet anode, International Journal of Hydrogen Energy 35, 7971-7981.
    [33] Wang, K., Zeng, P., and Ahn, J. (2011), High performance direct flame fuel cell using a propane flame, Proceedings of the Combustion Institute 33, 3431-3437,.
    [34] Zhu, X., Lü, Z., Wei, B., Huang, X., Wang, Z., and Su, W. (2010), Direct Flame SOFCs with La 0.75Sr 0.25Cr0.5Mn0.5O3−δ∕Ni Coimpregnated Yttria-Stabilized Zirconia Anodes Operated on Liquefied Petroleum Gas Flame, Journal of The Electrochemical Society157, B1838.
    [35] Zhu, X., Wei, B., Lü, Z., Yang, L., Huang, X., Zhang , Y., and Liu, M. (2012), A direct flame solid oxide fuel cell for potential combined heat and power generation, International Journal of Hydrogen Energy37, 8621-8629.
    [36] Vogler, M., Horiuchi, M., and Bessler, W.G. (2010), Modeling, simulation and optimization of a no-chamber solid oxide fuel cell operated with a flat-flame burner, Journal of Power Sources195, 7067-7077.
    [37] Larminie, J. and Dicks, A., Fuel cell systems explained: J. Wiley, 2003.
    [38] Levy, A. (1964), The Accuracy of the bubble Meter Method for Gas Flow Measurment, Journal of Scientific Instruments41, 49-453.
    [39] Goodwin. D. CANTERA. Available: http://blue.caltech.edu/cantera/ index.html.
    [40] Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V, andQin, Z,. GRI-Mech 3.0. Available: http://www.me.berkeley.edu/gri mech/
    [41] Kee, R.J., Coltrin, M.E., and Glarborg, P., Chemically Reacting Flow: Theory and Practice. Hoboken, New Jersey: John Wiley & Sons, 2003.

    無法下載圖示 校內:2017-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE