| 研究生: |
賴文揚 Lai, Wen-Yang |
|---|---|
| 論文名稱: |
探討Mst3激脢對於細胞型態及移動所執行的功能 Functional studies of mst3 kinase in the cell morphology and cell migration |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 核醣核酸干擾技術 、mst3 激脢 、細胞移動 、乳癌細胞 |
| 外文關鍵詞: | mst3 kinase, RNAi, cell migration, breast cancer cell |
| 相關次數: | 點閱:127 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Mammalian Sterile 20-like kinase 3 (Mst3) 為一個近年來新發現未知功能的蛋白激酶,它屬於germinal center kinase-III (GCK-III) 家族蛋白激酶。它包含一個演化保留的NH2端激酶區域,以及一個COOH端調控區域。其它的MST家族成員主要有3個,其中Mst1、2屬於GCK-II,而Mst4與Mst3同屬於GCK-III。在功能上,Mst1以及Mst2已被證實參與在細胞凋亡訊息途徑中。而胺基酸序列與Mst3相似度最高(~88%)的Mst4,主要是調控腫瘤細胞的生長、細胞的轉形調控,以及抑制細胞移動。然而,雖然Mst3也被證實參與在細胞凋亡訊息途徑,但對於Mst3的生理功能目前仍不是很清楚。
由於Mst3普遍表現在各組織以及細胞中,因此,我們實驗室想利用小片段干擾核醣核酸(siRNA)技術,抑制掉細胞中的Mst3表現,進一步研究Mst3在細胞中所扮演的生理功能。我們由Mst3訊息核醣核酸(mRNA),挑選六段不同序列片段來構築Mst3 RNAi質體。藉由同時送入RNAi 質體與HA-Mst3質體短暫表現在細胞中,證實有兩種Mst3 RNAi能有效抑制外送的HA-Mst3表現。之後,藉由轉送(transfection)以及G418藥物篩選,使Mst3 RNAi能穩定表現在人類乳癌細胞(MCF-7)中。藉由西方點墨法分析證實,我們利用藥物篩選所建立的Mst3 RNAi細胞株,細胞內的Mst3蛋白表現明顯被抑制下來。之後經由MTT分析細胞生長結果發現,控制組(vector)及實驗組(RNAi)細胞的增生情形,在比較上並無差異。表示細胞內Mst3表現量降低,並不會影響細胞的生長速率。
但在各種細胞移動實驗,如:細胞癒合實驗、及Boyden chamber細胞移動分析中,發現相對於控制組(vector),實驗組(RNAi)細胞株的細胞移動明顯增加。此外,我們將Mst3過度表現在細胞容易移動的MDCK細胞中,發現細胞移動明顯被抑制。因此,由以上結果我們推斷Mst3在細胞中,可能是扮演抑制細胞移動的角色。而在未來我們將更進一步研究Mst3抑制細胞移動的分子機制。
Mammalian Sterile 20-like kinase 3 (Mst3), the physiological functions of which is unknown, is a member of the germinal center kinase-III family. It contains a conserved kinase domain at its NH2 terminus, and a regulatory domain at its COOH terminus. There are another three members of MST family. The Mst1/Mst2 belongs to GCK-II subfamily and the Mst4 belongs to the GCK-III. The Mst1 and Mst2 are involved in inducing apoptosis. The Mst4, which shares 88% sequence similarity to Mst3, mediates cell growth, cell transformation, and cell motility instead of promote apoptosis. Nevertheless, the physiological functions of Mst3 are unknown.
The Mst3 is ubiquitously expressed in most tissues and cell lines. In order to study the biological function, we exploited the small interfering RNA (siRNA) technique to suppress Mst3 expression. We constructed Mst3 RNAi plasmid targeting six different locations of Mst3 mRNA. Transient transfection of RNAi and HA-Mst3 indicate that two of Mst3 RNAi could suppress exogenous Mst3 expression. One of the functional Mst3 RNAi plasmid was stably expressed in MCF-7 cell by transfection. Western blot analysis indicated that the Mst3 protein expression was significantly silenced by Mst3 RNAi plasmid comparing with the vector control. We investigated whether cell proliferation and cell motility was altered by down-regulating expression of Mst3. There was no difference of cell proliferation between Mst3 RNAi clone and control cells. In contrast, the cell motility was enhanced in Mst3 RNAi clone in wounding assay, boyden chamber assay, and cell Immunofluorescence. Further more, the cell migration was evidently reduced when we stably overexpressed Mst3 in MDCK cell. Therefore, we propose that Mst3 plays a role of inhibiting cell motility. Further study is required to understand the molecular mechanism how Mst3 regulates cell migration.
Brummelkamp, T. R., Bernards R., and Agami, R. A System for Stable Expression of Short Interfering RNAs in Mammalian Cells. Science. 296:550-553. 2002.
Creasy, C. L., and Chernoff J. Cloning and Characterization of a Human Protein Kinase with Homology to Ste20 J. Biol. Chem. 270: 21695 –21700. 1995.
Creasy, C. L., Chernoff, J. Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene 167: 303-306. 1995.
Creasy, C. L., Ambrose, D. M., and Chernoff J. The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J. Biol. Chem.271:21049–21053. 1996.
Dan, I., Watanabe, N. M., and Kusumi, A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 11:220–230. 2001.
Dan, I., Ong, S-E., Watanabe, N. M., Blagoev, B., Nielsen, M. N., Kajikawa, E., Kristiansen T. Z., Mann M., Pandey A. Cloning of MASK, a novel member of the mammalian germinal center kinase III subfamily, with apoptosis-inducing properties. J. Biol. Chem. 277: 5929-5939. 2002.
DeSouza P.M., Kankaanranta H., Michael A., Barnes P.J., Giembycz M.A., and Lindsay. M. A. Caspase-catalyzed cleavage and activation of Mst1 correlates with eosinophil but not neutrophil apoptosis. Blood 99:3432–3438. 2002.
Elbashir S. M. , Harborth J. , Lendeckel W. , Yalcin A. , Weber K. ,Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference incultured mammalian cells Nature 411: 494 – 498. 2001.
Fu C. A., Shen M., Huang B. C., Lasaga J., Payan D. G., Luo Y. TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. J. Biol. Chem. 274:30729-30737. 1999.
Glantschnig, H., Rodan G. A., and Reszka A. A. Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J. Biol.Chem. 277:42987–42996. 2002
Graves J.D., Gotoh Y., Draves K. E., Ambrose D., Han D. K., Wright M.,Chernoff J., Clark E. A., and Krebs. E. G. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 17:2224–2234. 1998.
Hanks S.K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification FASEB J. 576-596. 1995.
Jakobi R., Chen C. J., Tuazon P. T., and Traugh J. A. Molecular Cloning and Sequencing of the Cytostatic G Protein-activated rotein Kinase PAK I J. Biol. Chem. 271: 6206 – 6211. 1996.
Johnston A. M., Naselli G., Gonez L. J., Martin R. M., Harrison L. C.,DeAizpurua H. J. SPAK, a STE20/SPS1-related kinase that activates the p38 pathway. Oncogene 19: 4290-4297. 2000.
Kyriakis J. M. Signaling by the Germinal Center Kinase Family of Protein Kinases J. Biol. Chem. 274: 5259 – 5262. 1999.
Lee, K.K., Ohyama T., Yajima N., Tsubuki S., and Yonehara. S. MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J. Biol. Chem. 276:19276–19285.
2001.
Lin J.L., Chen H. C., Fang H. I., Robinson D., Kung H. J., and Shih. H. M. MST4, a new Ste20-related kinase that mediates cell growth and transformation via modulating ERK pathway. Oncogene 20:6559–6569. 2001.
Lin Y., Khokhlatchev A., Figeys D., and Avruch J. Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J. Biol. Chem. 277:47991–48001. 2002.
Manning G. , Whyte D. B. , Martinez R. , Hunter T. , and Sudarsanam S.The Protein Kinase Complement of the Human Genome Science. 298:1912-1934. 2002
Osada, S., Izawa M., Saito R., Mizuno K., Suzuki A., Hirai S., and Ohno S. YSK1, a novel mammalian protein kinase structurally elated to Ste20 and SPS1, but is not involved in the known MAPK pathways. Oncogene 14:2047–2057. 1997.
Parsons J.T. Focal adhesion kinase: the first ten years. J Cell Sci. 116(Pt8):1409-16. 2003
Preisinger C., Short B., Corte V. D., Bruyneel E., Haas A., Kopajtich R.,Gettemans J., and Barr F. A. YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3 J. Cell Biol. 164(7):1009-1020. 2004.
Qian, Z., Lin C., Espinosa R., LeBeau M., and Rosner M.R. Cloning and characterization of MST4, a novel Ste20-like kinase. J. Biol. Chem.276:22439–22445. 2001.
Ridley A.J., Schwartz M. A., Burridge K., Firtel R. A., Ginsberg M. H.,Borisy G., Parsons J. T., and Horwitz A. R. Cell migration: integrating signals from front to back. Science 302:1704–1709. 2003
Sabourin L. A., Seale P., Wagner J., Rudnicki M. A. Caspase 3 cleavage of the Ste20-related kinase SLK releases and activates an apoptosis-inducing kinase domain and an actin-disassembling region. Mol. Cell. Biol. 20: 684-696. 2000.
Schinkmann K. and Blenis J. Cloning and Characterization of a Human STE20-like Protein Kinase with Unusual Cofactor Requirements J. Biol. Chem. 272: 28695 – 28703. 1997.
Sung V., Luo W., D. Qian, I. Lee, B. Jallal, and M. Gishizky. The Ste20 kinase MST4 plays a role in prostate cancer progression. Cancer Res.63:3356–3363. 2003.
Ura, S., N. Masuyama, J.D. Graves, and Y. Gotoh. Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc.Natl. Acad. Sci. USA. 8:10148–10153. 2001.
Vindis C, Teli T, Cerretti DP, Turner CE, Huynh-Do U EphB1-mediated cell migration requires the phosphorylation of paxillin at Y31/Y118. J.Biol. Chem. [Epub ahead of print] 2004.