| 研究生: |
林頌恩 Lin, Sung-En |
|---|---|
| 論文名稱: |
延伸π共軛N-芳香雜環有機正極材料應用於高性能超長壽命水性鋅離子電池 Extended π-Conjugated N-Heteroaromatic Organic Cathode for High-performance Ultralong-life Aqueous Zinc-ion Batteries |
| 指導教授: |
柯碧蓮
Kaveevivitchai, Watchareeya |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 水性鋅離子電池 、六氮聯三伸萘 、有機正極材料 、多電子轉移 、大規模儲能 |
| 外文關鍵詞: | Aqueous zinc-ion batteries, Hexaazatriphenylene-based materials, Organic cathode, Multi-electron acceptor, Energy storage |
| 相關次數: | 點閱:27 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當全球能源需求快速增長時,需要更高效率且效能卓越的儲能系統。然而,若要大規模生產能源儲存元件,成本、毒性和環境影響成為關鍵因素。有機正極材料正成為取代鋰離子電池正極中無機化合物的有力競爭者,因為它們具有氧化還原和結構的可調性、成本效益、環境友善和永續發展的特性。
雙電子轉移的充電鋅離子電池於大規模能量儲存具有潛力。鋅金屬負極具有多個優勢,包括天然資源豐富、低成本、無毒性以及與水性和非水性系統的兼容性。其中,水性電解液特別有吸引力,因為它們的離子導電性遠高於大多數有機電解液,並且成本較低且不易燃燒。因此,水性鋅離子電池近年來受到了極大的關注。
在此,一種新的有機小分子,富含氮的六氮聯三伸萘嵌入萘醌基團所形成的NATAQ作為正極材料,具有高度延伸的共軛系統及二維層狀結構,可進行多電子轉移,理論容量高達640 mAh g‒-1(每分子有15個電子轉移)。在0.1至1.45 V的電壓範圍內於水性鋅離子電池,NATAQ作為正極材料在電流密度300 mA g‒-1下表現出高實際比容量(530 mAh g‒-1),超高倍率性能(100 A g‒-1下仍可達到262 mAh g‒-1的可逆電容量),以及卓越的循環穩定性(30 A g‒-1下10,000次循環後保持89% 的容量)。
NATAQ中許多的氧化還原活性位置以及延伸的共軛系統促進多電子氧化還原化學反應,具有電子離域效應,從而顯著提高了氧化還原電位、能量密度和氧化還原動力學。此外,透過電化學研究和數種的原位與非原位鑑定分析技術,探討鋅離子和質子在充放電過程中的氧化還原機制和動力學,證實NATAQ能很好的在系統中運作。NATAQ的卓越性能使水性鋅離子電池在大規模能量儲存中具有潛在潛力。
Due to the rapidly increasing global energy demand, there is a pressing need for more efficient and powerful energy storage solutions. As these storage units are mass-produced, factors such as cost, toxicity, and environmental impact become crucial. Organic-based electrode materials are emerging as strong contenders to replace inorganic compounds used as Li-ion battery cathodes because they offer redox tunability, structural flexibility, cost-effectiveness, environmental friendliness, and sustainability.
Zinc-based rechargeable batteries with two-electron transfer are promising for large-scale energy storage. Zinc metal anodes have several advantages, including natural abundance, low cost, non-toxicity, and compatibility with both aqueous and non-aqueous systems. Water-based electrolytes are particularly attractive due to their much higher ionic conductivity compared to most organic electrolytes, as well as their lower cost and non-flammability. Consequently, aqueous zinc-ion batteries (AZIBs) have been gaining significant attention in recent years.
Herein, a new organic small molecule, highly nitrogen-rich hexaazatrianthranylene embedded quinone (NATAQ), is introduced featuring a highly extended π-conjugation system with multi-electron transfer capability and a high theoretical capacity of 640 mAh g−1 (15 e− per molecular unit). Within the voltage window of 0.1−1.45 V vs. Zn/Zn2+, NATAQ cathode exhibits a high practical specific capacity of 530 mAh g‒1 at 300 mA g‒1, ultrahigh rate capability (262 mAh g−1 at 100 A g−1), and remarkable cycling stability (89% capacity retention after 10,000 cycles at 30 A g−1) in AZIBs.
The numerous carbonyl and imine electroactive centers and the large π-conjugation in NATAQ allow multi-electron redox chemistry with electronic delocalization, resulting in significantly increased redox potential, energy density, and redox kinetics. To investigate these charge transfer kinetics, cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT), and electrochemical impedance spectroscopy (EIS) have been used. Additionally, the redox reactions of the multi-electron redox-active NATAQ and the Zn2+/H+ charge storage mechanism have been elucidated through various electrochemical investigations, as well as in-situ and ex-situ characterization, including Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), pH measurement, 1H solid-state NMR, and ultraviolet-visible spectroscopy (UV-Vis). The superior performance of NATAQ is a strong indication of the bright prospects associated with the utilization of AZIBs in large-scale energy storage.
(1) Cho, J.; Jeong, S.; Kim, Y. Commercial and Research Battery Technologies for Electrical Energy Storage Applications. Prog. Energy Combust. Sci. 2015, 48, 84–101.
(2) Javed, M. S.; Mateen, A.; Ali, S.; Zhang, X.; Hussain, I.; Imran, M.; Shah, S. S. A.; Han, W. The Emergence of 2d Mxenes Based Zn‐ion Batteries: Recent Development and Prospects. Small 2022, 18, 2201989.
(3) Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent Advances in Aqueous Zinc-ion Batteries. ACS Energy Lett. 2018, 3, 2480–2501.
(4) Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Rechargeable Magnesium Battery: Current Status and Key Challenges for the Future. Prog. Mater. Sci. 2014, 66, 1–86.
(5) Wang, D.; Gao, X.; Chen, Y.; Jin, L.; Kuss, C.; Bruce, P. G. Plating and Stripping Calcium in an Organic Electrolyte. Nat. Mater. 2018, 17, 16–20.
(6) Zhang, Y.; Liu, S.; Ji, Y.; Ma, J.; Yu, H. Emerging Nonaqueous Aluminum‐ion Batteries: Challenges, Status, and Perspectives. Adv. Mater. 2018, 30, 1706310.
(7) Son, S.-B.; Gao, T.; Harvey, S. P.; Steirer, K. X.; Stokes, A.; Norman, A.; Wang, C.; Cresce, A.; Xu, K.; Ban, C. An Artificial Interphase Enables Reversible Magnesium Chemistry in Carbonate Electrolytes. Nat. Chem. 2018, 10, 532–539.
(8) Zampardi, G.; La Mantia, F. Open Challenges and Good Experimental Practices in the Research Field of Aqueous Zn-ion Batteries. Nat. Commun. 2022, 13, 687.
(9) Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H. N. Zinc-ion Batteries: Materials, Mechanisms, and Applications. Mater. Sci. Eng. R Rep. 2019, 135, 58–84.
(10) Nie, C.; Wang, G.; Wang, D.; Wang, M.; Gao, X.; Bai, Z.; Wang, N.; Yang, J.; Xing, Z.; Dou, S. Recent Progress on Zn Anodes for Advanced Aqueous Zinc‐ion Batteries. Adv. Energy Mater. 2023, 13, 2300606.
(11) Hu, L.; Xiao, P.; Xue, L.; Li, H.; Zhai, T. The Rising Zinc Anodes for High-energy Aqueous Batteries. EnergyChem 2021, 3, 100052.
(12) Li, Y.; Wang, Z.; Cai, Y.; Pam, M. E.; Yang, Y.; Zhang, D.; Wang, Y.; Huang, S. Designing Advanced Aqueous Zinc‐ion Batteries: Principles, Strategies, and Perspectives. Energy Environ. Mater. 2022, 5, 823–851.
(13) Tang, B.; Shan, L.; Liang, S.; Zhou, J. Issues and Opportunities Facing Aqueous Zinc-ion Batteries. Energy Environ. Sci. 2019, 12, 3288–3304.
(14) Guo, Y.; Zhang, Y.; Lu, H. Manganese‐based Materials as Cathode for Rechargeable Aqueous Zinc‐ion Batteries. Battery Energy 2022, 1, 20210014.
(15) Zhang, B.; Dong, P.; Yuan, S.; Zhang, Y.; Zhang, Y.; Wang, Y. Manganese-based Oxide Cathode Materials for Aqueous Zinc-ion Batteries: Materials, Mechanism, Challenges, and Strategies. Chem & Bio Engineering 2024, 1, 113–132.
(16) Liu, N.; Li, B.; He, Z.; Dai, L.; Wang, H.; Wang, L. Recent Advances and Perspectives on Vanadium-and Manganese-based Cathode Materials for Aqueous Zinc Ion Batteries. J. Energy Chem. 2021, 59, 134–159.
(17) Huang, J.; Zeng, J.; Zhu, K.; Zhang, R.; Liu, J. High-Performance Aqueous Zinc–Manganese Battery with Reversible Mn2+/Mn4+ Double Redox Achieved by Carbon Coated MnOx Nanoparticles. Nano-Micro Lett. 2020, 12, 1–12.
(18) Wan, F.; Niu, Z. Design Strategies for Vanadium‐based Aqueous Zinc‐ion Batteries. Angew. Chem. Int. Ed. 2019, 131, 16508–16517.
(19) Ding, J.; Du, Z.; Gu, L.; Li, B.; Wang, L.; Wang, S.; Gong, Y.; Yang, S. Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide. Adv. Mater. 2018, 30, 1800762.
(20) Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A High-capacity and Long-life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode. Nat. Energy. 2016, 1, 1–8.
(21) Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Towards High-voltage Aqueous Metal-ion Batteries Beyond 1.5 V: the Zinc/zinc Hexacyanoferrate System. Adv. Energy Mater. 2015, 5, 1400930.
(22) Trócoli, R.; La Mantia, F. An Aqueous Zinc‐ion Battery Based on Copper Hexacyanoferrate. ChemSusChem 2015, 8, 481–485.
(23) Yang, Q.; Mo, F.; Liu, Z.; Ma, L.; Li, X.; Fang, D.; Chen, S.; Zhang, S.; Zhi, C. Activating C‐coordinated Iron of Iron Hexacyanoferrate for Zn Hybrid‐ion Batteries with 10000‐cycle Lifespan and Superior Rate Capability. Adv. Mater. 2019, 31, 1901521.
(24) Lu, K.; Song, B.; Zhang, Y.; Ma, H.; Zhang, J. Encapsulation of Zinc Hexacyanoferrate Nanocubes with Manganese Oxide Nanosheets for High-performance Rechargeable Zinc Ion Batteries. J. Mater. Chem. A 2017, 5, 23628–23633.
(25) Wang, Y.; Li, Q.; Zhao, Y.; Abdalla, K. K.; Xiong, J.; Zhao, Y.; Sun, X. Design Strategies and Challenges of Next Generation Aqueous Zn-organic Batteries. Next Energy 2023, 1, 100061.
(26) Li, Z.; Tan, J.; Wang, Y.; Gao, C.; Wang, Y.; Ye, M.; Shen, J. Building Better Aqueous Zn-organic Batteries. Energy Environ. Sci. 2023, 16, 2398-2431.
(27) Kumankuma-Sarpong, J.; Tang, S.; Guo, W.; Fu, Y. Naphthoquinone-based Composite Cathodes for Aqueous Rechargeable Zinc-ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 4084–4092.
(28) Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal Quinone Electrodes for Long Cycle Life Aqueous Rechargeable Batteries. Nat. Mater. 2017, 16, 841–848.
(29) Wang, Y.; Wang, C.; Ni, Z.; Gu, Y.; Wang, B.; Guo, Z.; Wang, Z.; Bin, D.; Ma, J.; Wang, Y. Binding Zinc Ions by Carboxyl Groups From Adjacent Molecules Toward Long‐life Aqueous Zinc–organic Batteries. Adv. Mater. 2020, 32, 2000338.
(30) Zhang, S.; Long, S.; Li, H.; Xu, Q. A High-capacity Organic Cathode Based on Active N Atoms for Aqueous Zinc-ion Batteries. Chem. Eng. J. 2020, 400, 125898.
(31) Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z. Proton Insertion Chemistry of a Zinc–organic Battery. Angew. Chem. Int. Ed. 2020, 132, 4950–4954.
(32) Ye, Z.; Xie, S.; Cao, Z.; Wang, L.; Xu, D.; Zhang, H.; Matz, J.; Dong, P.; Fang, H.; Shen, J. High-rate Aqueous Zinc-organic Battery Achieved by Lowering Homo/lumo of Organic Cathode. Energy Storage Mater. 2021, 37, 378–386.
(33) Li, J.; Huang, L.; Lv, H.; Wang, J.; Wang, G.; Chen, L.; Liu, Y.; Guo, W.; Yu, F.; Gu, T. Novel Organic Cathode with Conjugated N-heteroaromatic Structures for High-performance Aqueous Zinc-ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 38844–38853.
(34) Menart, S.; Luzanin, O.; Pirnat, K.; Pahovnik, D.; Moškon, J. e.; Dominko, R. Design of Organic Cathode Material Based on Quinone and Pyrazine Motifs for Rechargeable Lithium and Zinc Batteries. ACS Appl. Mater. Interfaces 2024, 16, 16029–16039.
(35) Grignon, E.; Battaglia, A. M.; Schon, T. B.; Seferos, D. S. Aqueous Zinc Batteries: Design Principles Toward Organic Cathodes for Grid Applications. IScience 2022, 25 104204.
(36) Qiu, X.; Xu, J.; Zhou, K.; Huang, X.; Liao, M.; Cao, Y.; Zhou, G.; Wei, P.; Wang, Y. Molecular Tailoring of P–type Organics for Zinc Batteries with High Energy Density. Angew. Chem. Int. Ed. 2023, 62, e202304036.
(37) Ma, T.; Easley, A. D.; Wang, S.; Flouda, P.; Lutkenhaus, J. L. Mixed Electron-ion-water Transfer in Macromolecular Radicals for Metal-free Aqueous Batteries. Cell Rep. Phys. Sci 2021, 2, 100414.
(38) Winsberg, J.; Muench, S.; Hagemann, T.; Morgenstern, S.; Janoschka, T.; Billing, M.; Schacher, F. H.; Hauffman, G.; Gohy, J.-F.; Hoeppener, S. Polymer/zinc Hybrid-flow Battery Using Block Copolymer Micelles Featuring a Tempo Corona as Catholyte. Polym. Chem. 2016, 7, 1711–1718.
(39) Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. An Aqueous, Electrolyte‐type, Rechargeable Device Utilizing a Hydrophilic Radical Polymer‐cathode. Macromol. Chem. Phys. 2009, 210, 1989–1995.
(40) Song, Z.; Miao, L.; Duan, H.; Ruhlmann, L.; Lv, Y.; Zhu, D.; Li, L.; Gan, L.; Liu, M. Anionic Co‐insertion Charge Storage in Dinitrobenzene Cathodes for High‐performance Aqueous Zinc–organic Batteries. Angew. Chem. Int. Ed. 2022, 61, e202208821.
(41) Luu, N. T.; Ivanov, A. S.; Chen, T.-H.; Popovs, I.; Lee, J.-C.; Kaveevivitchai, W. Proton-enabled Biomimetic Stabilization of Small-molecule Organic Cathode in Aqueous Zinc-ion Batteries. J. Mater. Chem. A 2022, 10, 12371–12377.
(42) Gao, Y.; Li, G.; Wang, F.; Chu, J.; Yu, P.; Wang, B.; Zhan, H.; Song, Z. A High-performance Aqueous Rechargeable Zinc Battery Based on Organic Cathode Integrating Quinone and Pyrazine. Energy Storage Mater. 2021, 40, 31–40.
(43) Wang, W.; Kale, V. S.; Cao, Z.; Lei, Y.; Kandambeth, S.; Zou, G.; Zhu, Y.; Abouhamad, E.; Shekhah, O.; Cavallo, L. Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zinc‐ion Batteries. Adv. Mater. 2021, 33, 2103617.
(44) Li, P.; Fang, Z.; Zhang, Y.; Mo, C.; Hu, X.; Jian, J.; Wang, S.; Yu, D. A High-performance, Highly Bendable Quasi-solid-state Zinc–organic Battery Enabled by Intelligent Proton-self-buffering Copolymer Cathodes. J. Mater. Chem. A 2019, 7, 17292–17298.
(45) Chen, Z.; Cui, H.; Hou, Y.; Wang, X.; Jin, X.; Chen, A.; Yang, Q.; Wang, D.; Huang, Z.; Zhi, C. Anion Chemistry Enabled Positive Valence Conversion to Achieve a Record High-voltage Organic Cathode for Zinc Batteries. Chem 2022, 8, 2204–2216.
(46) Ruan, P.; Liang, S.; Lu, B.; Fan, H. J.; Zhou, J. Design Strategies for High‐energy‐density Aqueous Zinc Batteries. Angew. Chem. Int. Ed. 2022, 134, e202200598.
(47) Zhao, Q.; Huang, W.; Luo, Z.; Liu, L.; Lu, Y.; Li, Y.; Li, L.; Hu, J.; Ma, H.; Chen, J. High-capacity Aqueous Zinc Batteries Using Sustainable Quinone Electrodes. Sci. Adv. 2018, 4, eaao1761.
(48) Lin, Z.; Shi, H.-Y.; Lin, L.; Yang, X.; Wu, W.; Sun, X. A High Capacity Small Molecule Quinone Cathode for Rechargeable Aqueous Zinc-organic Batteries. Nat. Commun. 2021, 12, 4424.
(49) Li, Z.; Tan, J.; Zhu, X.; Xie, S.; Fang, H.; Ye, M.; Shen, J. High Capacity and Long-life Aqueous Zinc-ion Battery Enabled by Improving Active Sites Utilization and Protons Insertion in Polymer Cathode. Energy Storage Mater. 2022, 51, 294–305.
(50) Zhang, H.; Zhong, L.; Xie, J.; Yang, F.; Liu, X.; Lu, X. A COF‐like N‐rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for High‐energy Aqueous Zinc Dual‐ion Batteries. Adv. Mater. 2021, 33, 2101857.
(51) Gao, Y.; Yin, J.; Xu, X.; Cheng, Y. Pseudocapacitive Storage in Cathode Materials of Aqueous Zinc Ion Batteries Toward High Power and Energy Density. J. Mater. Chem. A 2022, 10, 9773–9787.
(52) Li, W.; Xie, W.; Shao, F.; Qian, J.; Han, S.; Wen, P.; Lin, J.; Chen, M.; Lin, X. Molecular Engineering of Interplanar Spacing via π-conjugated Phenothiazine Linkages for High-power 2D Covalent Organic Framework Batteries. Chem 2023, 9, 117–129.
(53) Ye, F.; Liu, Q.; Dong, H.; Guan, K.; Chen, Z.; Ju, N.; Hu, L. Organic Zinc‐ion Battery: Planar, π‐conjugated Quinone‐based Polymer Endows Ultrafast Ion Diffusion Kinetics. Angew. Chem. Int. Ed. 2022, 134, e202214244.
(54) Yan, M.; Dong, N.; Zhao, X.; Sun, Y.; Pan, H. Tailoring the Stability and Kinetics of Zn Anodes Through Trace Organic Polymer Additives in Dilute Aqueous Electrolyte. ACS Energy Lett. 2021, 6, 3236–3243.
(55) Zhao, K.; Fan, G.; Liu, J.; Liu, F.; Li, J.; Zhou, X.; Ni, Y.; Yu, M.; Zhang, Y.-M.; Su, H. Boosting the Kinetics and Stability of Zn Anodes in Aqueous Electrolytes with Supramolecular Cyclodextrin Additives. J. Am. Chem. Soc. 2022, 144, 11129–11137.
(56) Zhang, H.; Xie, S.; Cao, Z.; Xu, D.; Wang, L.; Fang, H.; Shen, J.; Ye, M. Extended π-conjugated System in Organic Cathode with Active C═N Bonds for Driving Aqueous Zinc-ion Batteries. ACS Appl. Energy Mater. 2021, 4, 655–661.
(57) Menart, S.; Pirnat, K.; Pahovnik, D.; Dominko, R. Triquinoxalinediol as Organic Cathode Material for Rechargeable Aqueous Zinc-ion Batteries. J. Mater. Chem. A 2023, 11, 10874–10882.
(58) Li, S.; Shang, J.; Li, M.; Xu, M.; Zeng, F.; Yin, H.; Tang, Y.; Han, C.; Cheng, H. M. Design and Synthesis of a π‐conjugated N‐heteroaromatic Material for Aqueous Zinc-organic Batteries with Ultrahigh Rate and Extremely Long Life. Adv. Mater. 2023, 35, 2207115.
(59) Niu, S.; Wang, Y.; Zhang, J.; Wang, Y.; Tian, Y.; Ju, N.; Wang, H.; Zhao, S.; Zhang, X.; Zhang, W. Engineering Low‐cost Organic Cathode for Aqueous Rechargeable Battery and Demonstrating the Proton Intercalation Mechanism for Pyrazine Energy Storage Unit. Small 2023, 20, 2309022.
(60) Menart, S.; Pirnat, K.; Krajnc, A.; Ruiz-Zepeda, F.; Pahovnik, D.; Santa, J. F. V.; Dominko, R. Synthesis of Organic Cathode Materials with Pyrazine and Catechol Motifs for Rechargeable Lithium and Zinc Batteries. J. Power Sources 2024, 596, 234033.
(61) Na, M.; Oh, Y.; Byon, H. R. Effects of Zn2+ and H+ Association with Naphthalene Diimide Electrodes for Aqueous Zn-ion Batteries. Chem. Mater. 2020, 32, 6990–6997.
(62) Lin, L.; Lin, Z.; Zhu, J.; Wang, K.; Wu, W.; Qiu, T.; Sun, X. A Semi-conductive Organic Cathode Material Enabled by Extended Conjugation for Rechargeable Aqueous Zinc Batteries. Energy Environ. Sci. 2023, 16, 89–96.
(63) Shi, Y.; Wang, P.; Gao, H.; Jin, W.; Chen, Y.; Huang, Y.; Wu, T.-R.; Wu, D.-Y.; Xu, J.; Cao, J. π-conjugated N-heterocyclic Compound with Redox-active Quinone and Pyrazine Moieties as a High-capacity Organic Cathode for Aqueous Zinc-ion Batteries. Chem. Eng. J. 2023, 461, 141850.
(64) Wang, Q.; Liu, Y.; Wang, C.; Xu, X.; Zhao, W.; Li, Y.; Dong, H. Vat Orange 7 as an Organic Electrode with Ultrafast Hydronium-ion Storage and Super-long Life for Rechargeable Aqueous Zinc Batteries. Chem. Eng. J. 2023, 451, 138776.
(65) Wang, Y.; Wang, X.; Tang, J.; Tang, W. A Quinoxalinophenazinedione Covalent Triazine Framework for Boosted High-performance Aqueous Zinc-ion Batteries. J. Mater. Chem. A 2022, 10, 13868–13875.
(66) Shi, Y.; Xu, Z.; Wang, P.; Gao, H.; He, W.; Sun, Y.; Huang, Y.; Xu, J.; Cao, J. Tuning the Number of Redox Groups in the Cathode Toward High Rate and Long Lifespan Zinc-ion Batteries. ChemComm 2024, 60, 420–423.
(67) Li, W.; Xu, H.; Zhang, H.; Wei, F.; Huang, L.; Ke, S.; Fu, J.; Jing, C.; Cheng, J.; Liu, S. Tuning Electron Delocalization of Hydrogen-bonded Organic Framework Cathode for High-performance Zinc-organic Batteries. Nat. Commun. 2023, 14, 5235.
(68) Nam, K. W.; Kim, H.; Beldjoudi, Y.; Kwon, T.-w.; Kim, D. J.; Stoddart, J. F. Redox-active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries. J. Am. Chem. Soc. 2020, 142, 2541–2548.
(69) Guo, Z.; Ma, Y.; Dong, X.; Huang, J.; Wang, Y.; Xia, Y. An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angew. Chem. Int. Ed. 2018, 130, 11911–11915.
(70) Xu, D.; Cao, Z.; Ye, Z.; Zhang, H.; Wang, L.; John, M.; Dong, P.; Gao, S.; Shen, J.; Ye, M. Electrochemical Oxidation of π−π Coupling Organic Cathode for Enhanced Zinc Ion Storage. Chem. Eng. J. 2021, 417, 129245.
(71) Liu, N.; Wu, X.; Zhang, Y.; Yin, Y.; Sun, C.; Mao, Y.; Fan, L.; Zhang, N. Building High Rate Capability and Ultrastable Dendrite‐free Organic Anode for Rechargeable Aqueous Zinc Batteries. Adv. Sci. 2020, 7, 2000146.
(72) Zhang, H.; Fang, Y.; Yang, F.; Liu, X.; Lu, X. Aromatic Organic Molecular Crystal with Enhanced π–π Stacking Interaction for Ultrafast Zn-ion Storage. Energy Environ. Sci. 2020, 13, 2515–2523.
(73) Zhang, S.; Zhao, W.; Li, H.; Xu, Q. Cross‐conjugated Polycatechol Organic Cathode for Aqueous Zinc‐ion Storage. ChemSusChem 2020, 13, 188–195.
(74) Mirle, C.; Medabalmi, V.; Ramanujam, K. Electrode and Conductive Additive Compatibility Yielding Excellent Rate Capability and Long Cycle Life for Sustainable Organic Aqueous Zn-ion Batteries. ACS Appl. Energy Mater. 2021, 4, 1218–1227.
(75) Sun, T.; Yi, Z.; Zhang, W.; Nian, Q.; Fan, H. J.; Tao, Z. Dynamic Balance of Partial Charge for Small Organic Compound in Aqueous Zinc‐organic Battery. Adv. Funct. Mater. 2023, 33, 2306675.
(76) Sun, Q. Q.; Sun, T.; Du, J. Y.; Li, K.; Xie, H. M.; Huang, G.; Zhang, X. B. A Sulfur Heterocyclic Quinone Cathode Towards High‐rate and Long‐cycle Aqueous Zn‐organic Batteries. Adv. Mater. 2023, 35, 2301088.
(77) Du, D.; Zhou, J.; Yin, Z.; Feng, G.; Ji, W.; Huang, H.; Pang, S. High‐voltage Recyclable Organic Cathode Enabled by Heteroatomic Substitution for Aqueous Zinc‐ion Batteries. Adv. Energy Mater. 2024, 14, 2400580.
(78) Wang, Q.; Liu, Y.; Chen, P. Phenazine-based Organic Cathode for Aqueous Zinc Secondary Batteries. J. Power Sources 2020, 468, 228401.
(79) Kundu, D.; Oberholzer, P.; Glaros, C.; Bouzid, A.; Tervoort, E.; Pasquarello, A.; Niederberger, M. Organic Cathode for Aqueous Zn-ion Batteries: Taming a Unique Phase Evolution Toward Stable Electrochemical Cycling. Chem. Mater. 2018, 30, 3874–3881.
(80) Geng, X.; Ma, H.; Lv, F.; Yang, K.; Ma, J.; Jiang, Y.; Liu, Q.; Chen, D.; Jiang, Y.; Zhu, N. Ultrastable Organic Cathode Derived by Pigment/rgo for Aqueous Zinc-ion Batteries. Chem. Eng. J. 2022, 446, 137289.
(81) Wang, Q.; Xu, X.; Yang, G.; Liu, Y.; Yao, X. An Organic Cathode with Tailored Working Potential for Aqueous Zn-ion Batteries. ChemComm 2020, 56, 11859–11862.
(82) Chen, Y.; Dai, H.; Fan, K.; Zhang, G.; Tang, M.; Gao, Y.; Zhang, C.; Guan, L.; Mao, M.; Liu, H. A Recyclable and Scalable High‐capacity Organic Battery. Angew. Chem. Int. Ed. 2023, 62, e202302539.
(83) Li, C.; Hu, L.; Ren, X.; Lin, L.; Zhan, C.; Weng, Q.; Sun, X.; Yu, X. Asymmetric Charge Distribution of Active Centers in Small Molecule Quinone Cathode Boosts High‐energy and High‐rate Aqueous Zinc‐organic Batteries. Adv. Funct. Mater. 2024, 34, 2313241.
(84) Rowland, R. S.; Taylor, R. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected From Van Der Waals Radii. J. Phys. Chem. A 1996, 100, 7384–7391.
(85) Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L.-P.; Zhang, Y.; Wang, Y. Boosting Lithium Storage in Covalent Organic Framework via Activation of 14-electron Redox Chemistry. Nat. Commun. 2018, 9, 1–13.
(86) Zhu, Y.; Chen, P.; Zhou, Y.; Nie, W.; Xu, Y. New Family of Organic Anode Without Aromatics for Energy Storage. Electrochim. Acta 2019, 318, 262–271.
(87) Zhuang, B.; Fujitsuka, M.; Tojo, S.; Cho, D. W.; Choi, J.; Majima, T. Influence of Charge Distribution on Structural Changes of Aromatic Imide Derivatives Upon One-electron Reduction Revealed by Time-resolved Resonance Raman Spectroscopy During Pulse Radiolysis. J. Phys. Chem. A 2018, 122, 8738–8744.
(88) Yan, H.; Zhang, X.; Yang, Z.; Xia, M.; Xu, C.; Liu, Y.; Yu, H.; Zhang, L.; Shu, J. Insight into the Electrolyte Strategies for Aqueous Zinc Ion Batteries. Coord. Chem. Rev. 2022, 452, 214297.
(89) Li, A.; Li, J.; He, Y.; Wu, M. Toward Stable and Highly Reversible Zinc Anodes for Aqueous Batteries via Electrolyte Engineering. J. Energy Chem. 2023, 83, 209–228.
(90) Chu, J.; Liu, Z.; Yu, J.; Cheng, L.; Wang, H. G.; Cui, F.; Zhu, G. Boosting H+ Storage in Aqueous Zinc Ion Batteries via Integrating Redox‐active Sites into Hydrogen‐bonded Organic Frameworks with Strong π‐π Stacking. Angew. Chem. Int. Ed. 2024, 136, e202314411.
(91) Wu, X.; Hong, J. J.; Shin, W.; Ma, L.; Liu, T.; Bi, X.; Yuan, Y.; Qi, Y.; Surta, T. W.; Huang, W. Diffusion-free Grotthuss Topochemistry for High-rate and Long-life Proton Batteries. Nat. Energy 2019, 4, 123–130.
(92) Wang, W.; Kale, V. S.; Cao, Z.; Kandambeth, S.; Zhang, W.; Ming, J.; Parvatkar, P.; Abou-Hamad, E.; Shekhah, O.; Cavallo, L. Phenanthroline Covalent Organic Framework Electrodes for High Performance Zinc-ion Supercapattery. ACS Energy Lett. 2020, 5, 2256–2264.
(93) Zhao, Y.; Huang, Y.; Wu, F.; Chen, R.; Li, L. High‐performance Aqueous Zinc Batteries Based on Organic/organic Cathodes Integrating Multiredox Centers. Adv. Mater. 2021, 33, 2106469.
(94) Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z. Proton insertion chemistry of a zinc–organic battery. Angew. Chem. Int. Ed. 2020, 59, 4920–4924.
(95) Deng, X.; Sarpong, J. K.; Zhang, G.; Hao, J.; Zhao, X.; Li, L.; Li, H.; Han, C.; Li, B. Proton Storage Chemistry in Aqueous Zinc‐organic Batteries: a Review. InfoMat. 2023, 5, e12382.
(96) Chen, Y.; Li, J.; Zhu, Q.; Fan, K.; Cao, Y.; Zhang, G.; Zhang, C.; Gao, Y.; Zou, J.; Zhai, T. Two‐dimensional Organic Supramolecule via Hydrogen Bonding and π–π Stacking for Ultrahigh Capacity and Long‐life Aqueous Zinc–organic Batteries. Angew. Chem. Int. Ed. 2022, 134, e202116289.
(97) Chen, S.; Li, K.; Hui, K. S.; Zhang, J. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High‐performance Aqueous Zinc‐ion Battery. Adv. Funct. Mater. 2020, 30, 2003890.
(98) Xu, J.; Yang, Y.; Zhu, A.; Wang, Y.; Peng, B.; Ma, L.; Cao, Y.; Wang, Y. Building Ultra-stable and Low-temperature Aqueous Zinc–organic Batteries via Noncovalent Supramolecular Self-assembly Strategy. Chem. Eng. J. 2024, 487, 150527.
(99) Guo, R.; Wang, Y.; Heng, S.; Zhu, G.; Battaglia, V. S.; Zheng, H. Pyromellitic Dianhydride: a New Organic Anode of High Electrochemical Performances for Lithium Ion Batteries. J. Power Sources 2019, 436, 226848.
(100) Song, Z.; Miao, L.; Ruhlmann, L.; Lv, Y.; Li, L.; Gan, L.; Liu, M. Proton‐conductive Supramolecular Hydrogen‐bonded Organic Superstructures for High‐performance Zinc‐organic Batteries. Angew. Chem. Int. Ed. 2023, 135, e202219136.
(101) Yang, B.; Ma, Y.; Bin, D.; Lu, H.; Xia, Y. Ultralong-life Cathode for Aqueous Zinc-organic Batteries via Pouring 9, 10-phenanthraquinone into Active Carbon. ACS Appl. Mater. Interfaces 2021, 13, 58818–58826.
(102) Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Aqueous Rechargeable Zinc/sodium Vanadate Batteries with Enhanced Performance From Simultaneous Insertion of Dual Carriers. Nat. Commun. 2018, 9, 1656.
(103) Lee, B.; Seo, H. R.; Lee, H. R.; Yoon, C. S.; Kim, J. H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Critical Role of ph Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries. ChemSusChem 2016, 9, 2948–2956.
(104) Lim, W. G.; Li, X.; Reed, D. Understanding the Role of Zinc Hydroxide Sulfate and Its Analogues in Mildly Acidic Aqueous Zinc Batteries: a Review. Small Methods 2023, 8, 2300965.
(105) Zhuang, Y.; Xie, Y.; Fei, B.; Cai, D.; Wang, Y.; Chen, Q.; Zhan, H. Construction of Molybdenum Vanadium Oxide/nitride Hybrid Nanoplate Arrays for Aqueous Zinc-ion Batteries and Reliable Insights into the Reaction Mechanism. J. Mater. Chem. A 2021, 9, 21313–21322.
(106) Zheng, S.; Shi, D.; Yan, D.; Wang, Q.; Sun, T.; Ma, T.; Li, L.; He, D.; Tao, Z.; Chen, J. Orthoquinone–based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc–organic Batteries. Angew. Chem. Int. Ed. 2022, 61, e202117511.
(107) Yang, J.; Cao, J.; Peng, Y.; Yang, W.; Barg, S.; Liu, Z.; Kinloch, I. A.; Bissett, M. A.; Dryfe, R. A. Unravelling the Mechanism of Rechargeable Aqueous Zn–MnO2 Batteries: Implementation of Charging Process by Electrodeposition of MnO2. ChemSusChem 2020, 13, 4103–4110.
(108) Wu, M. S.; Luu, N. T.; Chen, T. H.; Lyu, H.; Huang, T. W.; Dai, S.; Sun, X. G.; Ivanov, A. S.; Lee, J. C.; Popovs, I. Supramolecular Self‐assembled Multi‐electron‐acceptor Organic Molecule as High‐performance Cathode Material for Li‐ion Batteries. Adv. Energy Mater. 2021, 11, 2100330.
校內:2029-08-01公開