| 研究生: |
王豪章 Wang, Hao-Zhang |
|---|---|
| 論文名稱: |
估算 $mu$-norm 之上界的一些數值方法 Numerical Algorithms for Estimating Upper Bounds of $mu-$norm |
| 指導教授: |
王辰樹
Wang, Chern-Shuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 17 |
| 中文關鍵詞: | 數值方法 |
| 外文關鍵詞: | Numerical Algorithms, mu -norm |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇文章提出了一些估計 $mu$-norm 上界的數值方法。 由一些文獻中可知,計算 $mu$-norm 及其下界為 NP-hard 的問題。 因此在本文中我們專注於 $mu$-norm 上界的估計。
In this paper, some numerical algorithms for the
computation of an upper bound of the $mu$-norm are proposed. Some
literature have shown that the computations for $mu$-norm and its
lower bound are NP-hard problems. Hence, in this paper, we
concentrate on the computation of an upper bound of $mu$-norm.
[1] S. P. Boyd, V. Balakrishnan, A regularity result for the singualr values of a transfer matrix and a quadratically convergent algorithm for computing its $L_{infty}$ -norm, Systems and Control Letters, vol.15, p1-p7, 1990.
[2] S. P. Boyd, L. Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory. Philadelphia, SIAM, c1994.
[3] B. N. Datta,Numerical Methods for Linear control Systems Design and Analysis, Departmaent of Mathematical Sciences, June 15, 2002.
[4] Doyle, Analysis of feedback system with structured uncertainties, IEE PROC, vol.129, Pt. D, no.6, p242-p250, Noverber 1982.
[5] A. Packard, J. Doyle, The Complex Structure Singular Value, Automatica, vol.29, no.1, p72-p109,1993.
[6] H. N. Huang, M. L. Jiang, $mu$-Synthesis
via Interpolation Theory, 2002
[7] W. W. Lin, P. H. Tang, Q. F. Xu, On the computation of the Optimal $H_{infty}$-norm for Two Feedback Problem.
[8] O. Toker, H. $ddot{mbox{O}}$zbay. On the
Complexity of Purely Complex $mu$ Computation and Relate Problems
in Multidimensional Systems. IEEE TRANSACTIONS ON AUTOMATIC
CONTROL, vol.43, no.3, p409-p414, March 1998.
[9] C. T. Lawrence, A. L. Tits, P. Van Dooren, A fast algoithm for the computation of an upper bound on the $mu$-norm. C.T. Lawrence et al.,Automatica , vol.36, 2000, p449~p456.
[10] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, Upper Saddle River, New Jersey.