簡易檢索 / 詳目顯示

研究生: 巫承駿
Wu, Cheng-Chun
論文名稱: 運用訊號分析技術探討牙型係數與軌道表面粗糙度對於環狀式類滾珠軸承傳動磨潤行為之研究
Application of Signal Analysis Technology to Study the Effects of Groove Factor and Surface Roughnesses of Two Raceways on the Tribological Behavior of Ball-Bearing-Like Specimens
指導教授: 林仁輝
Lin, Jen-Fin
共同指導教授: 吳俊煌
Wu, Gien-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 252
中文關鍵詞: 牙型係數表面粗糙度間隔環磨耗振動滑溜現象
外文關鍵詞: groove factor, surface roughness, spacer, wear, vibration, skidding
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中為模擬實際滾珠螺桿之運動行為,製作環狀式類滾珠軸承試件且具有兩種不同的牙型係數(Groove factor)設計,除了鋼珠直徑相同,試件尺寸,內、外環粗糙度,鋼珠數量,間隔環數量與厚度皆不相同。運用訊號分析技術於磨潤試驗機之軸向負載與轉速設定,使各牙型係數最大接觸應力接近2.0GPa,以探討不同牙型係數與內、外環表面粗糙度對於磨潤行為及振動之影響。本研究之主要目的,為使用較創新及效率之方法來處理環狀式類滾珠軸承之振動訊號與磨潤行為之關係。此研究與以往最大不同之特點為應用實驗室所建立之訊號分析技術,配合實驗機台所量測之磨潤及振動參數加以分析,建立元件不同接觸位置之摩擦及磨耗與振動振幅和形態之間的關係。基因演算法(Genetic Algorithms)可解得許多以往不易計算之軸承重要參數,例如滾珠與間隔環、內、外環之摩擦係數以及滾珠與內、外環之接觸角。而振動訊號分析所使用的演算法有自適性拆解(Self-Adaptive Decomposition)、快速傅立葉(Fast Fourier Transform)及多尺度熵(Multi-scale Entropy)等方法。希望藉由訊號理論方法找出關鍵特徵訊號,釐清振動最重要的發生來源,且即時反應試件磨潤之運作狀況。
    實驗擷取之溫度、摩擦扭矩、荷重訊號、滑動比與振動訊號為軸承各種施工條件與內、外環粗糙度設計不同配置所導致。此參數及現象之控制因子為牙型係數以及內、外環軌道表面粗糙度。因為牙型係數會改變滾珠與軌道之配合度,從而影響平均摩擦係數、滑動比、溫升以及振動訊號;內、外環粗糙度則會影響平均摩擦係數、滑動比、溫升、振動訊號以及磨耗量。在牙型係數0.52中,當內環粗糙度配置Ra值約200nm時,則會降低滑溜現象(Skidding),且亦有較低之平均滑動比。而當外環粗糙度配置Ra值約250nm時,則會減少間隔環之磨耗損失量,且亦有較低之平均熵值與平均振動量。在牙型係數0.54中,當內環粗糙度配置Ra值約300nm時,則會降低滑溜現象(Skidding),且亦有較低之平均滑動比,而當外環粗糙度配置Ra值約200nm時,則會減少間隔環之磨耗損失量,且亦有較低之平均熵值與平均振動量。
    滾珠與間隔環之運動接觸行為為試件兩種振動參數以及間隔環摩擦係數以及磨耗量之主要控制因子。綜合實驗結果顯示,滾珠與間隔環之接觸有三種接觸位置中最高的摩擦係數及磨耗量;而振動之兩種參數值亦與此兩種磨潤參數形成正比之關係。目前摩擦、磨耗以及振動參數之實驗結果,均已建立與牙型係數以及內、外環粗糙度之數學模型。將來可望引用人工智慧(Artificial Intelligence)或深度學習(Deep Learning)等方法,建立出不同操作條件下之磨潤及振動訊號資料庫(Database),並配合人工智慧及深度學習技術達成智慧化系統感測診斷之功能。

    In this study, in order to simulate the behavior of the ball screw, the ball-bearing-like specimen is designed with two different groove factors. In addition to the same ball diameter, specimen size, inner and outer raceway roughness, the number of balls, the number and thickness of the spacer are slightly different. The maximum contact stress of each groove factors coefficient is close to 2.0GPa by using signal analysis technology. The main purpose of this study is to use an efficient method to study the ball bearing movement and tribological behavior. The most different in the study is using signal analysis technology with the measured parameters. Using the genetic algorithms can solve the parameters. Using the algorithm of signal analysis technology including self-adaptive decomposition , fast fourier transform and multi-scale entropy. It is hoped that the key feature signal will be found by the signal theory method, and the operation status of the machine will be reflected in real time, and the action of the maintenance machine will be carried out. In the future, it is expected to use artificial intelligence or deep learning to establish a signal database under different abnormal conditions to achieve intelligent system sensing and diagnosis technology.
    In the experiment, it is found that the temperature , frictional torque, load, slip ratio and vibration signal are caused by the configuration of various bearing conditions. The control factors of the specimens are groove factor and surface roughness.
    The groove factor controls the average friction coefficient, sliding ratio, temperature rise and vibration signal, because the groove factor will change the degree of cooperation between the ball and the raceway; the inner and outer raceway roughness will affect the average friction coefficient, sliding ratio, temperature, vibration signal and wear.
    The results show that the groove factor 0.52, while the inner raceway roughness is disposed at an Ra value of 200 nm, the effect of skidding is reduced, and a lower average sliding ratio is also obtained. While the roughness of the outer raceway is placed at an Ra value of 250 nm, the amount of wear loss of the spacer ring is reduced, and the average entropy value and the average vibration value are also low. The results show that the groove factor 0.54, while the inner raceway roughness is disposed at an Ra value of 300 nm, the effect of skidding is reduced, and a lower average sliding ratio is also obtained, which improves the lubricating performance. While the roughness of the outer raceway is placed at an Ra value of 200 nm, the amount of wear loss of the spacer ring is reduced, and the average entropy value and the average vibration value are also low.

    內容 摘要 I Extended Abstract IV 致謝 IX 目錄 X 表目錄 XV 圖目錄 XVII 1 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機 8 1-4 論文架構 12 2 第二章 基本理論 14 2-1 平面環狀式類滾珠軸承之運動學分析 14 2-1-1 滾珠與軌道面之牙型係數 15 2-1-2 平面環狀式類滾珠軸承 16 2-1-3 幾何分析與初始接觸角 18 2-1-4 變形分析與負荷因子 20 2-1-5 曲率差及曲率和 21 2-1-6 滾珠軸承數學模型分析 25 2-2 平面環狀式類滾珠軸承之接觸滑動分析 28 2-2-1 滾珠自旋、公轉角速度 29 2-2-2 滑動速度之推導 30 2-2-3 滑動比 31 2-3 滾珠與間隔環之接觸力分析以及演化式演算法(Evolutionary Algorithms) 33 2-3-1 滾珠與間隔環間之正向力 33 2-3-2 演化式演算法(Evolutionary Algorithms) 37 2-3-3 初始機制(Initialization) 38 2-3-4 基因演算法應用於滾珠與間隔環間之摩擦係數 42 2-4 數位訊號處理(Digital Signal Processing) 45 2-4-1 取樣定理(Sampling theorem) 46 2-4-2 自適性拆解(Self-Adaptive Decomposition) 47 2-4-3 快速傅立葉轉換(Fast Fourier Transform) 52 2-4-4 特徵頻率(Characteristic frequency) 57 2-4-5 多尺度熵(Multi-Scale Entropy) 61 3 第三章 試件製作及實驗方法 86 3-1 實驗目的 86 3-2 試件設計及製作 87 3-3 實驗機台 90 3-4 量測儀器 91 3-4-1 閃頻儀 (Stroboscope) 91 3-4-2 訊號感測器 93 3-4-3 三維表面輪廓儀 94 3-5 實驗規劃與步驟 94 3-5-1 熱電偶量測位置 95 3-5-2 前置作業 96 3-5-3 實驗步驟 97 4 第四章 結果與討論 114 4-1-1 牙型係數與表面粗糙度對軸向力之影響 116 4-1-2 牙型係數與表面粗糙度對摩擦扭矩行為之影響 118 4-1-3 牙型係數與表面粗糙度對溫升之影響 120 4-1-4 牙型係數與表面粗糙度對滑動比之影響 121 4-1-5 牙型係數與表面粗糙度對間隔環、內外環摩擦係數與內外環接觸角之影響 125 4-2 訊號分析運用於各牙型係數與不同內外環粗糙度配對之討論 127 4-2-1 訊號分析技術之流程介紹 128 4-2-2 牙型係數與表面粗糙度對多尺度熵差值與叢狀振動之影響 132 4-2-3 牙型係數與表面粗糙度對頻譜分析之影響 135 4-3 各牙型係數與不同內外環粗糙度配對之磨潤參數討論 138 4-3-1 多尺度熵平均總差值、平均總振動、叢狀振動參數與平均摩擦係數對於牙型係數與表面粗糙度之影響 139 4-3-2 多尺度熵平均總差值、平均總振動、平均摩擦係數與滑溜(Skidding)現象對於牙型係數與表面粗糙度之影響 142 4-3-3 平均溫升、平均摩擦係數與平均滑動比對於牙型係數與表面粗糙度之影響 145 4-4 各牙型係數與不同內外環粗糙度配對之磨耗程度討論 147 4-4-1 以光學顯微鏡掃描各試件磨耗程度之影響 148 4-4-2 牙型係數與表面粗糙度對間隔環磨耗程度之影響 149 第五章 結論與未來展望 241 5-1結論 241 5-2未來展望 244 參考文獻 245

    [1] T. A. Harris, "An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings," Journal of Lubrication Technology, vol. 93, no. 1, pp. 17-23, 1971.
    [2] T. A. Harris, Rolling bearing analysis. John Wiley and sons, 2008.
    [3] B. Ravani and S. Velinsky, "Kinematics of the ball screw mechanism," Journal of mechanical design, vol. 116, pp. 849-855, 1994.
    [4] M. C. Lin, S. A. Velinsky, and B. Ravani, "Design of the Ball Screw Mechanism for Optimal Efficiency," Journal of Mechanical Design, vol. 116, no. 3, pp. 856-861, 1994.
    [5] J. F. Lin, "Kinematic analysis of the ball screw mechanism considering variable contact angles and elastic deformations," ASME Journal of Mechanical Design, vol. 125, pp. 717-733, 2003.
    [6] C.C. Wei and R.S. Lai, "Kinematical analyses and transmission efficiency of a preloaded ball screw operating at high rotational speeds," Mechanism and machine theory, vol. 46, no. 7, pp. 880-898, 2011.
    [7] J. F. Lin and N. T. Liao, "A new method for the analysis of deformation and load in a ball bearing with variable contact angle," Journal of Mechanical Design, vol. 123, no. 123, pp. 304-312, 2001.
    [8] J. F. Lin and N. T. Liao and, "Ball bearing skidding under radial and axial loads," Mechanism and Machine Theory, vol. 37, no. 1, pp. 91-113, 2002.
    [9] F. Hirano, "Motion of a ball in angular-contact ball bearing," Asle Transactions, vol. 8, no. 4, pp. 425-434, 1965.
    [10] A. Nakajima and T. Mawatari, "Dynamic behaviour of ball motion and its effect on oil film formation in ball screw," Tribology Series, vol. 43, pp. 449-457, 2003.
    [11] J. Walowit and C. Allen, "A theory of lubrication by micro-irregularities," ASME J. Basic Eng, vol. 88, no. 3, pp. 177-185, 1966.
    [12] I. Etsion and L. Burstein, "A model for mechanical seals with regular microsurface structure," Tribology Transactions, vol. 39, no. 3, pp. 677-683, 1996.
    [13] I. Etsion, Y. Kligerman, and G. Halperin, "Analytical and experimental investigation of laser-textured mechanical seal faces," Tribology Transactions, vol. 42, no. 3, pp. 511-516, 1999.
    [14] V. Brizmer, Y. Kligerman, and I. Etsion, "A laser surface textured parallel thrust bearing," Tribology Transactions, vol. 46, no. 3, pp. 397-403, 2003.
    [15] I. Etsion, Y. Kligerman, and A. Shinkarenko, "Improving Tribological Performance on Piston Rings by Partial Surface Texturing," Transactions of the ASME-F-Journal of Tribology, vol. 123, pp. 632-638, 2005.
    [16] A. Ronen, I. Etsion, and Y. Kligerman, "Friction-reducing surface-texturing in reciprocating automotive components," Tribology Transactions, vol. 44, no. 3, pp. 359-366, 2001.
    [17] X. Ai and H. S. Cheng, "The effects of surface texture on EHL point contacts," Transactions of the ASME-F-Journal of Tribology, vol. 118, pp. 59-66, 1996.
    [18] Q. J. Wang and D. Zhu, "Virtual texturing: modeling the performance of lubricated contacts of engineered surfaces," Journal of Tribology, vol. 127, no. 4, pp. 722-728, 2005.
    [19] Y. Tokunaga and T. Igarashi and T. Sugiura, “Studies on the sound and vibration of a ball screw : sound characteristics of a ball screw”, Transactions of the Japan Society of Mechanical Engineers, Part C vol. 31, no. 4, pp.732-738, 1988.
    [20] Y. Tokunaga and T. Igarashi and T. Sugiura, “Studies on the soundand vibration of a ball screw”, Transactions of the Japan Society of Mechanical Engineers, Part C, vol. 55, no. 520, pp.2945-2950, 1989.
    [21] H. Yamaguchi and O. Tsutomu, “Development of NSK S1 series ball screws and linear guides”, Motion & Control, NSK Ltd., no. 11, pp.27-34, 1996.
    [22] R. S. Randy and G. H. Thomas and K. Farrukh and R. G. Bartheld, “Motor bearing damage detection using stator current monitoring”, Industry Applications, IEEE Transactions on, vol. 31, no. 6, pp.1274-1279, 1995.
    [23] 劉家瑋,“馬達動態特性鑑別及故障診斷”,中原大學機械工程學系碩士論文,2002。
    [24] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy”, American Journal of Physiology-Heart and Circulatory Physiology, vol. 278, pp.2039-2049, 2000.
    [25] M. Costa and A. L. Goldberger and C. K. Peng, “Multi-scale entropy analysis of complex physiologic time series”, Physical Review Letters, vol. 89, no. 6, pp.068102-1-068102-4, 2002.
    [26] M. Costa and A. L. Goldberger and C. K. Peng, “Multi-scale entropy analysis of biological signals”, Physical Review E, vol.71, pp.021906-1-021906-18, 2005.
    [27] 王俊傑,吳求文,吳順德,李易宗,吳豐泰,“多尺度熵在軸承異常監控與診斷之應用”,中國機械工程學會第二十八屆全國學術研討會論文集,2011。
    [28] 何慶賀,“運用不同特徵萃取方法結合支撐向量機於滾珠螺桿傳動系統之故障診斷",國立成功大學機械工程學系碩士論文,2015。
    [29] 黃仲宏,“機械產業年鑑",2014。
    [30] N. T. Liao and J. F. Lin, "Rolling-sliding analysis in ball bearing considering thermal effect," Tribology Transactions, vol. 49, no. 1, pp. 1-16, 2006.
    [31] A. Jones, "Ball motion and sliding friction in ball bearings," Journal of Basic Engineering, vol. 81, no. 1, pp. 1-12, 1959.
    [32] N. T. Liao, "Analyses of Mechanisms and Fatigue Life in a High-Speed Ball Bearing," Doctor of Phiosophy, National Cheng Kung University, 2002.
    [33] M. Quillien and R. Gras and L. Collongeat and T. Kachler, "A testing device for rolling–sliding behavior in harsh environments: the twin-disk cryotribometer," Tribology international, vol. 34, no. 4, pp. 287-292, 2001.
    [34] W. Y. Wang and I. H. Li and M. C. Chen and S. F. Su, and S. B. Hsu, "Dynamic slip-ratio estimation and control of antilock braking systems using an observer-based direct adaptive fuzzy–neural controller," IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1746-1756, 2009.
    [35] J. H. Holland, "Adaptation in Natural and Artificial Systems," University of Michigan Press, 1975.
    [36] J. Arora, Introduction to Optimum Design. Academic Press, 2004.
    [37] 方紹宇, "應用基因演算法於運動系統之前饋摩擦力補償," 臺北科技大學自動化科技研究所學位論文, pp. 1-53, 2005.
    [38] C. E. Shannon, “Communication in the presence of noise”, Proc. Institute of Radio Engineers, vol. 37, no. 1, pp.10-21, 1949.
    [39] H. Nyquist, “Certain topics in telegraph transmission theory”, Trans. AIEE, vol. 47, pp.617-644, 1928.
    [40] Li. Helong and Y. Lihua and H. Daren, “The study of the intermittency test filtering character of Hilbert–Huang transform”, Mathematics and Computers in Simulation, pp.22-32, 2005.
    [41] L. Y. Lu, “Fast Intrinsic Mode Decomposition of Time Series Data with Sawtooth Transform”, ORACLE Technical Report, 2007.
    [42] L. Y. Lu, “Fast Intrinsic Mode Decomposition of Time Series Data and filtering of time series dat”, ORACLE Technical Report, 2008.
    [43] Z. K. Penga and W. T. Peter and F. L. Chu, “An improved Hilbert–Huang transform and its application in vibration signal analysis”, Journal of Sound and Vibration, vol. 286, pp.187–205.
    [44] H. Norden and C. Zheng and L. Steven and M. C. Wu and H. H. Shih and Q. Zheng and N. C. Yen and C. C. Tung and H. H. Liu, “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis”, Proc. R. Soc. Lond. A, vol. 454, pp.903-995, 1998.
    [45] G. Gai, “The processing of rotor startup signals based on empirical mode decomposition”, pp.222-235, 2006.
    [46] P. Malliavin and G. Letac, “傅立葉分析及頻譜分析”。
    [47] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series”, Mathematics of Computation, vol. 19, no. 90, pp.297-301, 1965.
    [48] 李天龍,“以FFT為架構建立之諧波參數分析”,國立中山大學碩士論文,1999。
    [49] R. C Eisenmann and R. C. Eisenmann, “Machinery Malfunction Diagnosis and Correction”, Prentice Hall, USA, 1998.
    [50] R. S. Randy and G. H. Thomas and K. Farrukh and R. G. Bartheld, “Motor bearing damage detection using stator current monitoring”, Industry Applications, IEEE Transactions on, vol. 31, no 6, pp.1274-1279, 1995.
    [51] 劉家瑋,“馬達動態特性鑑別及故障診斷”,中原大學機械工程學系碩士論文,2002。
    [52]“TACB系列滾珠螺桿支撐軸承”,興中軸承有限公司。
    [53] 洪梓豪,“頻譜分析與碎形理論運用於滾珠螺桿傳動系統之訊號分析及運轉狀況鑑定”,國立成功大學機械工程學系碩士論文,2014。
    [54] 黃淳紹,“運用頻譜分析與多重碎形理論於長時間滾珠螺桿系統運轉時訊號分析”,國立成功大學機械工程學系碩士論文,2013。
    [55] H. Li and H. Zheng and L. Tang, “Gear fault diagnosis based on order tracking and Hilbert-Huang transform”, IEEE Sixth International Conference on Fuzzy Systems and Knowledge Discovery, pp.468-472, 2009.
    [56] S. M. Pincus, “Approximate entropy as a measure of system complexity”, Proceedings of the National Academy of Sciences, vol. 88, no 6, pp.2297-2301, 1991.
    [57] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy”, American Journal of Physiology-Heart and Circulatory Physiology, vol. 278, pp.2039-2049, 2000.
    [58] M. Costa and A. L. Goldberger and C. K. Peng, “Multi-scale entropy analysis of complex physiologic time series”, Physical Review Letters, vol. 89, no. 6, pp.068102-1-068102-4, 2002.
    [59] M. Costa and A. L. Goldberger and C. K. Peng, “Multi-scale entropy analysis of biological signals”, Physical Review E, vol. 71, pp.021906-1-021906-18, 2005.
    [60] Hiwin Technology Corp., Ballscrews Technical Information. 2015.

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE