簡易檢索 / 詳目顯示

研究生: 李明軒
Lee, Min-seng
論文名稱: 以超過濾去除玻尿酸醱酵液中微量蛋白質之製程開發
Process development for removal of trace protein from broth of hyaluronic acid fermentation by ultrafiltration
指導教授: 陳特良
Chen, Teh-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 69
中文關鍵詞: 鹽溶超過濾玻尿酸醱酵
外文關鍵詞: ultrafiltration, hyaluronic acid fermentation, salting-in
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用超過濾系統,移除玻尿酸醱酵液之微量蛋白質。藉由透析降低醱酵液離子強度,促使醱酵液中微量蛋白質凝集析出,再以微過濾加以濾除。將去除菌體的醱酵液進行蛋白質電泳實驗,可得知醱酵液中殘存蛋白質之分子量均低於11 kDa以下。將醱酵液在10 kDa超過濾膜下進行透析,當溶液導電度降低至1.247 ms/cm時,會有白色蛋白質顆粒凝集析出。我們進一步以IR鑑定此凝集物,發現在1567 cm-1具有蛋白質之胜鍵特徵吸收。此結果顯示蛋白質析出是由於鹽溶現象 (Salting-in) 所造成。利用此鹽溶現象進行純化,玻尿酸中蛋白質含量可由1.39 % 降低至0.102 % (g protein/g HA),達到化妝品級之水準,而且製程回收率可達83%。相較於傳統耗費大量酒精同時需額外添加界面活性劑製程相比,本製程極具競爭力。

    The removal of trace protein from broth of hyaluronic acid fermentation by ultrafiltration was studied. The decrease of ion strength in the broth resulted in protein coagulation. The coagulated particles were removed by microfiltration. With SDS-PAGE electrophoresis, it was found that the molecular weight of contaminant proteins were below 11 kDa. Accordingly, a ultrafiltration membrane of 10 kDa MWCO was used to dialyze the broth. When the conductivity of the broth was lower than 1.247 ms/cm, some insoluble material appeared. The insoluble has a strong absorbance at 1567 cm-1,which is the characteristic absorbance of peptide bond. This fact suggests that the appearance of the insoluble is due to protein coagulation, a phenomenon known as salting-in. Taking advantage of the salting-in method, the protein content in HA could be reduced from 1.39 % to 0.102 % (g protein/g HA), with a recovery up to 83% . The purity of hyaluronic acid is within cosmetic grade. Compared to traditional, processes which use large amounts of ethanol and surfactant, the present process is highly competitive.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅷ 符號說明 Ⅹ 第一章 緒論 1 1-1 前言 1 1-2 玻尿酸之結構及特性 1 1-3 玻尿酸之用途 3 1-4 玻尿酸來源 4 1-5 微生物生產玻尿酸之原理 4 1-6 鹽溶(salting-in) 和鹽析(salting-out)之原理 5 1-7 薄膜分離簡介及原理 7 1-8 文獻回顧 10 1-9 研究動機及目標 13 第二章 實驗材料和方法 14 2-1 菌株及藥品 14 2-1-2藥品 14 2-2 儀器與裝置 15 2-3 實驗方法 17 2-3-1 菌種的保存 17 2-3-2 搖瓶振盪醱酵培養 17 2-3-3 醱酵槽實驗 18 2-3-4 批次醱酵之主培養基組成 20 2-4 分析方法 21 2-4-1 菌體濃度分析方法 21 2-4-2 玻尿酸濃度分析方法 23 2-4-3 蛋白質濃度分析原理及方法 26 2-4-4 玻尿酸之分子量 28 2-4-5 SDS-PAGE蛋白質電泳 30 2-6 玻尿酸純化方法 35 2-7 超過濾裝置 36 第三章 結果與討論 38 3-1 玻尿酸醱酵基本介紹 38 3-1-1 批次生產玻尿酸情形 38 3-1-2 玻尿酸之分子量 40 3-2 硫酸銨沉澱醱酵液內之蛋白質 42 3-3 醱酵液殘留蛋白質的含量及其分子量 44 3-4 以透析膜(MWCO:12kDa ~ 14kDa)濾除醱酵液中蛋白質 46 3-5 證明凝集析出物為蛋白質 51 3-6 證明醱酵液在低離子強度下具有鹽溶 (salting-in) 現象 54 3-7 設計純化製程 56 3-8 透析製程純化的效果 57 3-9 傳統純化製程和透析製程比較 62 第四章 總結 64 參考文獻 65 自述 69 圖目錄 圖1-1 玻尿酸之結構 1 圖1-2、玻尿酸之柱狀雙螺旋結構 2 圖1-3、蛋白質分子在水溶液中之狀態 6 圖1-4、濾速及濾餅厚度隨過濾時間情形 9 圖2-1、醱酵槽示意圖 19 圖2-2、菌體濃度檢量線 22 圖2-3、玻尿酸檢量線 25 圖2-4、蛋白質濃度檢量線 27 圖2-5、Pullulan standard 分子量和滯留時間之關係 29 圖2-6、Diafiltration裝置圖 37 圖3-1、以TSB為前培養,基本批次醱酵最終菌體以及產量 39 圖3-2、玻尿酸之滯留時間 41 圖3-3、醱酵液添加不同濃度硫酸銨,其上清液玻尿酸和蛋白質變化 情形 43 圖3-4、以蛋白質電泳偵測醱酵液中蛋白質的分子量分佈 45 圖3-5、透析前後醱酵液的外觀 48 圖3-6、低溫是否能在透析的時間內抑制菌體的生長 49 圖3-7、以IR光譜對於牛血清蛋白(BSA)和凝集析出物進行分析 52 圖3-8、以IR光譜對於玻尿酸和濾除凝集析出物之玻尿酸進行分析 53 圖3-9、電導度降低凝集物析出情形 55 圖3-11、去除菌體醱酵液隨透析體積玻尿酸之變化情形 59 圖3-12、玻尿酸黏度隨離子強渡變化情形 60 圖3-13、去除菌體醱酵液隨透析體積蛋白質之變化情形 63 圖3-14、傳統製程和透析製程比較 63 表目錄 表2-1、批次培養的培養機組成 20 表2-2、電泳膠片成分配製 (12.5%) 30 表2-3、電泳膠片成分配製 (2.5%) 31 表2-4、 SDS running buffer 31 表3-1、透析前後及移除凝集物之醱酵液分析 48

    Armstrong, D. C., and Johns, M. R., “Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus,” Appl. Environ. Microbiol., 63, 2759-2764 (1997).

    Armstrong, D. C., and Johns, M. R., “Improved molecular weight analysis of Streptococcal hyaluronic acid by size exclusion chromatography,” Biotech. Tech., 9, 7, 491- 496 (1995).

    Aviva, S., Bigelow, R., Christopher W., Arbabi S., Yang L., Maier, R. V., Wainwright, N., Childs, A., and Miller R. J., “Evaluation of Hyaluronan from Different Sources: Streptococcus zooepidemicus, Rooster Comb, Bovine Vitreous, and Human Umbilical Cord,” Biomacromolecules, 5, 2122-2127 (2004).

    Bitter, T., and Muir, H. M., “A modified uronic acid carbazole reaction,” Anal. Biochem., 4, 330-334 (1962).

    Brake, J. W., and Thacker, K., “Hyaluronic acid from bacterial culture,” U. S. Pat.4517295 (1985).

    Cui, Z. F., and Wright, K. I. T., “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism,” J. Membr. Sci., 117, 109−116 (1996).

    Cui, Z. F., and Wright, K. I. T., “Gas-liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions,” J. Membr. Sci., 90, 183−189 (1994).

    Carlino, S., and Magnette, F. C. O., “Process for purifying high molecular weight hyaluronic acid,” U. S. Pat. 6489467 (2002).

    Do, J. H., Chang, H. N., and Lee, S. Y., “ Efficient recovery of γ-Poly glutamic acid from highly viscous culture broth,” Biotech. and Bioeng., 76, 3 (2001).

    Ellwood, D. C., Evans, C. G. T., Dunn, G. M., McInnes, N., Yeo, R., and Smith, K. J., “Production of hyaluronic acid,” U. S. Pat. 5563051 (1996).

    Han, H. Y., Jang, S. H., Kim, E. C., Park, J. K., Lee, C., Park, H. S., Kim, Y. C., and Park, H. J., “Microorganism producing hyaluronic acid and purification method of hyaluronic acid,” U. S. Pat. 20060127987 (2006).

    Harris, E. L. V., “Protein purification methods: a practical approach (Harris, E.L.V. and Angal, S. Ed.),” IRL Press, Oxford, 151 (1989).

    Johns, M. R., Goh, L. T. and Oeggerli, A., “Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus.” Biotechnol. Lett., 16, 507-512 (1994).

    Kim, J. H., Yoo, S. J., Oh, D. K., Kweon, Y. G., Park, D. W., Lee, C. H., and Gil, G. H.,“Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid.” Enzym. Microb. Tech., 19, (1996)

    Park, D. W., C., Lee, H., and Gil, G. H., “Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid,” Enzym. and Micro. Tech., 19, 440-445 (1996).

    Smith, C., Evans, Yeo, R., and Evans, G. T., “Production of hyaluronic acid,” U. S. Pat. 5563051 (1996).

    Ladisch, R. M., “Bioseparations engineering: principles, practice, and economics,” New York, (1994).

    Lee, C. K., Chang, W. G., and Ju, Y. H., “Air slugs entrapped cross-flow filtration of bacterial suspensions,” Biotechnol. Bioeng., 41, 525−530(1993).

    Lowry, K. M., and Beavers, E. M., “Thermal stability of sodium hyaluronate in aqueous solution,” J. Biomed. Mater. Res., 28, 1239-1244 (1994).

    Mahadevan, H., and Hall, C. K., “A statistical-mechanical model of protein precipitation by nonionic polymer,” AIChE J., 36, 1517 (1990).

    Mausolf, A., Jungmann, J., Robenek, H., and Prehm, P., “Shedding of hyaluronate from streptococci,” Biochemical J., 267, 1, 191-196 (1990).

    Melander, W., and Horvath, C., “Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series,” Arch. Biochem. Biophys., 183, 200 (1977).

    Mercier, M., Fonade, C., and Lafforgue-Delorme, C., “Influence of the flow regime on the efficiency of a gas-liquid two-phase medium filtration,” Biotechnol. Tech., 9, 853−858 (1995).

    Meyer, K., “The biological significance of hyaluronic acid and hyaluronidase.” Physiol. Rev., 27, 335-359 (1947).

    Miyazawa, T., Takehiko, S., and Mizushima S. I., “Normal vibration of N-Methylacetamide,” J. Chem. Phys., 29, 611, (1958).

    Nimrod, A., Greenman, B., Kanner, D., Landsberg, M., and Beck, Y., “Method of producing high molecular weight sodium hyallronate by fermentation of streptococcus,” U. S. Pat. 4780414 (1986).

    Prescott, A., and Groton , M., “Method for purifying high molecular weight
    hyaluronic acid,” U. S. Pat. 6660853 (2002).

    Reis R, V., E. Goodrich, M., Yson, C. L., and Frautschy, L. N., “Linear scale ultrafiltration,” Biotechnol. Bioeng., 55, 5, 737–746 (1997).

    Przybycien, T. M., and Bailey, J. E., “Aggregation kinetics in salt-induced protein precipitation,” AIChE J., 35, 1779 (1989)

    Scott, J., Heatley, F., and Hull, W. E., “Secondary structure of hyaluronate in solutions,” Biochem. J., 220,197-205 (1984).

    Scott, J., “Secondary structures in hyaluronan solutions: chemical and biological implications,” The Biology of Hyaluronan. Ciba Foundation Symposium No., 143, 6-14 (1989).

    Shih, Y. C., Prausnitz, J. M., and H. W. Blanch, “Some characteristics of protein precipitation by salts,” Biotechnol. Bioeng., 40, 1155 (1992).

    Smith, P. J., Shon, H. K., Vigneswaran, S. H., Ngo, H., and Nguyen, H., “Productivity enhancement in a cross-flow ultrafiltration membrane system through automated de-clogging operations,” J. Membr. Sci., 280, 82–88 (2006).

    Stevenson, F. J., “Humus chemistry, genesis, composition reaction,” John Wiley & Sons, New York (1982)

    Thonard, J. C., Migliore, S. A., and Blustein, B., “Isolation of Hyaluronic acid from broth cultures of Streptococci,” J. biological chem., 239, 3, (1964).

    Timasheff, S. N., and Arakawa, T., “Mechanism of protein precipitation and stabilization by co-solvent,” J. Cryst. Growth, 90, 39 (1988).

    Wang, H. M., Li, C. Y., Chen, S. J., Cheng, T. W., and Chen, T. L., ”Abatement of concentration polarization in ultrafiltration using n-hexadecane/water two-phase flow” J. Membr. Sci., 238, 1–7 (2004).

    Weissman, B., and Meyer, K., “The structure of hyalobiuronic acid and ofhyaluronic acid from umbilical cord,” J. Am. Chem. Soc., 76, 1753-1757 (1954).

    Xiarchos, I., and Doulia, D., “Interaction behavior in ultrafiltration of nonionic surfactant micelles by adsorption,” J. Colloid and Interface Sci., 299, 102–111 (2006).

    Zhou, H., Jinren, N., Wen, H., and Jiandong, Z., “Separation of hyaluronic acid from fermentation broth by tangential flow microfiltration and ultrafiltration” Sep. and Purifi. Tech. 52, 1, 29-38 (2006).

    凌沛學、賀豔麗、郭學平、侯麗君、楊曉虹和張天明,“透明質酸”,中國輕工業出版社 (2000)。

    下載圖示 校內:2009-07-31公開
    校外:2009-07-31公開
    QR CODE