簡易檢索 / 詳目顯示

研究生: 黃世偉
Huang, Shih-Wei
論文名稱: 集集地震所引起之台灣中部地區地下水位變化及孔隙水壓驟變所造成特殊地質現象之研究
Groundwater level variations and special geological phenomena caused by dramatic changes of pore water pressure in central Taiwan during the 1999 Chi-Chi earthquake
指導教授: 李宗仰
Lee, Tzong-Yeang
簡錦樹
Jiin-shuhJean
學位類別: 博士
Doctor
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 142
中文關鍵詞: 地下水位變化最大垂直地表加速度九份二山濁水溪沖積扇集集地震摩擦熱岩石噴發
外文關鍵詞: trishear, Chi-Chi earthquake, rock eruption, frictional heat, landslide, Chiu-Fen-Erh-Shan, groundwater level change, correlation, Choshui river alluvial fan, vertical direction peak ground acceleration
相關次數: 點閱:126下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1999年9月21日之集集大地震(Mw = 7.3)係屬於板塊內斷層錯動所造成,而2002年3月31日之花蓮地震(Mw = 6.8)及2003年12月10日之台東成功地震(Mw = 6.8)則為歐亞板塊與菲律賓海板塊隱沒帶及交界,因碰撞造成斷裂所引起。因三個地震其發震位置、震源深度、規模大小有所不同,可深入探討其對濁水溪沖積扇的密集水井網之地下水位影響。
    本研究使用搜集的地下水位觀測資料經由統計分析的結果顯示,1999年集集地震之同震地下水位變化範圍及幅度遠較2002年花蓮及2003年成功地震的變化為大,1999年集集地震同震時出現較大幅度之地下水位湧衝變化而在2002年花蓮及2003年成功地震時並未發現;在2002年花蓮及2003年成功地震時出現了幾個明顯的同震上升及震後地下水位上升、下降及湧衝之變化,然而在1999年集集地震並未發現,上述之差異應與不同之地震位置及震波傳播時之路徑效應有關。由1999年集集地震濁水溪沖積扇2-1含水層(受壓到部份自由含水層)地下水位變化大小及型態觀察顯示,其與各影響因子之相關性大小依序為觀測井到震源距離(r = -0.77, p << 0.05, n = 37)、最大垂直地表加速度(z-PGA, r = -0.75, p << 0.05, n = 37)、水力傳導係數的對數值(logK, r = -0.35, p = 0.036<0.05, n = 37)。一般而言,1999年集集地震同震地下水位變化和水位井在不同深度含水層之水力傳導係數的算術平均值有從扇頂遞減至扇尾之趨勢,而研究中也發現應力、應變之變化速率較地下水位變化為快。
    九份二山於1999年9月21日集集大地震時發生了大規模的山崩,且於岩石中發現了高摩擦熱所產生的玻璃物質及岩石噴發現象,不同於一般地震所引發之山崩型態。岩石中所含之假玄武玻璃(pseudotachylyte)代表岩石於山崩滑移過程中之環境的水含量不大,且滑移距離和滑移帶厚度之比值甚大,方能產生高熱,並形成玻璃物質。九份二山的岩石噴發可能之機制為(1)震波傳遞通過裂隙產生相對移動及高摩擦熱,使裂隙水汽化,伴隨高地震加速度,產生裂隙及鄰近岩石之噴發現象;(2) 震波傳遞通過裂隙未產生相對移動,但壓力迫使裂隙水噴出,而使岩石發生噴發作用;(3)九份二山山崩之過程產生高摩擦熱使孔隙水溫度及壓力上升,當向上力大於向下力時,亦有可能產生岩石之推升現象,而於強震過程中之抬昇可能會演變成岩石噴發。
    豐原−石岡和霧峰一帶於1999年集集地震時有不同之地表變形型態,前者為抬昇伴隨著明顯之地表破裂而後者則無明顯的地表破裂,本研究認為應和不同之沉積物厚度、孔隙水壓及地震傳播時之trishear有關。

    The 1999 Chi-Chi earthquake on September 21, 1999 (MW=7.3) was caused by the intraplate’s Chelungpu fault rupture, while the 2002 Haulien earthquake on March 31, 2002 (MW=6.8), and the 2003 Chengkung earthquake on December 10, 2003 (MW=6.8), were caused by the dislocation of collision and subduction zone between the Eurasian and Philippine Sea plates. The different earthquake locations, and depths helped us study the effect of an earthquake on the densely distributed groundwater level observation net in the Choshui river alluvial fan of central Taiwan. The scope and extent of the coseismic groundwater level change caused by the 1999 Chi-Chi earthquake was based on the observed groundwater level data for the alluvial fan are more extensive and remarkable than those of the 2002 Hualien and 2003 Chengkung earthquakes. The significantly high amplitude of coseismic surge-type groundwater level changes appeared in the 1999 Chi-Chi earthquake, but did not appear in the 2002 Hualien’s and the 2003 Chengkung’s. A few of the coseismic rise-type groundwater level changes and post-seismic groundwater level changes were seen in the 2002 Hualien’s and 2003 Chengkung’s earthquakes, but were not found in the 1999 Chi-Chi earthquake. Such differences might be caused by distinct earthquake mechanisms and seismic wave propagation path. All of the different groundwater level changes which were observed in the present study suggest that the key parameters, from high to low correlations for Layer 2-1 (a confined to partially unconfined aquifer) in the Choshui river alluvial fan, are the distance from the observation well to the epicenter in the 1999 Chi-Chi earthquake (r=-0.77, p<<0.05, n=37), vertical direction peak ground acceleration (z-PGA, r=0.75, p<<0.05, n=37), and logarithmic hydraulic conductivity (logK, r=-0.35, p=0.036<0.05, n=37). Meanwhile, in general, the coseismic groundwater level change and the arithmetic average of hydraulic conductivity for a well in different depths of aquifers in the alluvial fan have a tendency to decrease from the proximal to distal fans. Our results also revealed that the rate of change in tectonic stress and strain is faster than that of the coseismic groundwater level.
    In the 1999 Chi-Chi earthquake, unlike a common landslide a particular landslide occurring at Chiu-Fen-Erh-Shan was associated with contemporaneous formation of tektite induced by high frictional heat and large-scale eruptions of rock formations in the adjoining region. The occurrence of pseudotachylyte suggests a low water content in rocks and a high ratio of slip distance to slip-zone thickness so that high heat can be produced to initiate the formation of glassy materials. Evidence for a large-scale rock eruption was observed in the nearby region of the landslide area. Three possible causes of rock eruption are proposed here including: (1) transmission of seismic waves gave rise to relative displacement and high frictional heating that caused vaporization of pore water in association with high seismic acceleration and created fractures and adjoining rock eruption; (2) propagation of seismic waves did not produce relative motion along fractures but built up pressure forcing eruption of pore fluid and rocks; (3) high frictional heat produced by the processes of large-scale landslide increased the temperature and pressure of pore water. The country rocks were uplifted and erupted when the uplift force exceeded the gravity and cementation forces during the period of strong seismic motion.
    There were different surface deformed styles occurred in the Wufeng and Fengyuen-Shihkang areas, in which the former one is an uplift without significant surface rupture and the latter one is an uplift accompanied with surface rupture. The areas exhibiting different deformations are characterized by different sediment depth, pore pressure and trishear of seismic propagation.

    目錄 頁次 摘要..................................Ⅰ Abstract.................................Ⅲ 誌謝........................Ⅵ 目錄..............................Ⅶ 表目錄....................................Ⅹ 圖目錄.....................................Ⅹ 數學符號表...........................Ⅹ 第一章 緒論.. ........................1 1.1 研究動機. ................................1 1.1.1 1999年集集地震之發生.................1 1.1.2 2002年花蓮及2003年台東成功地震之發生............6 1.1.3 地震時因孔隙水壓變化可能造成之地質景觀.................6 1.2 研究區域內的地質概況........................11 1.2.1 濁水溪沖積扇之地質...................11 1.2.2 九份二山附近區域之地質..........15 1.2.3 石岡-豐原及霧峰一帶之地質...........19 1.2.4 研究區內地層組成.................21 1.3 文獻回顧.................................23 1.3.1 地震引起地下水位異常變化之相關文獻.........................23 1.3.2 地震引起孔隙水壓變化所產生地質現象之相關文獻.....25 1.4 研究範圍、目的與架構.......................26 第二章 集集地震前後地下水位變化機制及可能影響因子.......................29 2.1 地下水位異常之型態.................29 2.2 影響地下水位變化因子之濾除.............................34 2.3 地震時地下水位變化之模型.................34 2.3.1 由地下水位變化估測含水層孔隙率之改變.........................38 2.3.2 同震體積應變效率之估算.....................................38 2.4 地下水位異常起點之偵測及異常之判定.......................42 2.5 台灣中部逆斷層群帶之類比模型...................................44 2.6 觀測結果及分析...................................47 2.6.1集集、花蓮、成功地震之地下水位變化...............................47   2.6.1.1 震前地下水位變化................................47 2.6.1.2 同震地下水位變化.........................................52      2.6.1.3震後地下水位變化......................................62 2.6.2 地下水位異常之偵測與分析....................................62 2.6.3 同震地下水位變化和最大地表加速度 、震源距及地表位移之關係..............................64 2.6.4 同震地下水位變化和水力傳導係數之關係.......................67 2.6.5河川流量之變化...................................................68 2.7 討論......... .........70 2.7.1 地震地下水位變化與可能影響因子...................................70 2.7.1.1 不同地震之同震地下水位變化......................71 2.7.1.2 不同地震之地震前後地下水位變化............................74 2.7.2 敏感井位之決定及意義..................................75 2.7.3 河川流量之變化與地下水流之關係...................................76 第三章 集集地震於九份二山引起之山崩及岩石噴發現象.......................78 3.1 九份二山山崩滑移之成因及溫度上升分析..............................78 3.1.1山崩分析....................................78 3.1.2山崩滑移時於滑移帶之溫度上升模式...............................81 3.2 震波通過裂隙引起之溫度上升模式..........................................84 3.3 分析結果............ ...............................84 3.3.1 震波通過岩層裂隙之溫度及孔隙水壓上升.......................84 3.3.2 山崩時滑移帶之溫度與孔隙水壓之上升...........................85 3.4 討論...... ............................................................88 3.4.1 九份二山之應力聚焦效應................................88 3.4.2 岩石噴發之成因.............................................92 第四章 流體在石岡-豐原及霧峰一帶造成之不同地表變形.....................97 4.1 研究方法....................................................97 4.1.1現場地形量測、震測及硫酸鹽含量分析.................................97 4.1.1.1 現場地形量測................................................97 4.1.1.2 地表下地層調查.............................................97 4.1.1.3 震測分析..........................................98 4.1.1.4 硫酸鹽含量分析...........................................98 4.2 地下水和沉積物之特性................................................98 4.3 Trishear理論分析地震傳播所造成之褶皺....................................99 4.4結果...... ..................................101 4.4.1 地表抬昇無明顯破裂.................................................101 4.4. 2 地表抬昇伴隨地表破裂......................................106 4.5 討論.......... ....................................................107 4.5.1 研究區域內液化現象...............................................107 4.5.2地震時造成不同地表變形、破裂之影響因子..........................108 4.5.3 霧峰、豐原-石岡一帶之trishear及應力東轉成因.................111 第五章 綜合討論、結論與建議..........................................112 5.1綜合討論........................................................112 5.1.1 集集地震與歐美、日本等地地下水位變化之比較...............112 5.1.2岩石噴發、地震褶皺與歐美等地之比較..............................115 5.1.3 集集地震之地下水變化與岩石噴發、地震褶皺間之關係...116 5.2 本研究之主要發現及重要性........................................117 5.2.1 主要發現........................................117 5.2.2 重要性.............................................119 5.3 結論.........................................................120 5.4 建議.....................................................123 5.4.1自動偵測系統之建立..............................................123 5.4.2設立深層地下水位觀測井......................................123 5.4.3地下水位敏感觀測井之建立.............................123 5.4.4綜合相關觀測值研判地震之發生...........................124 5.5 未來之工作........................................................124 參考文獻..............................................................127 自述...................................................141

    王安濱、黃振義,水位異常形態及其與地震關系的初步分析,地震預報與地震工程研究論文集,馮德益主編,地震出版社,第16-21頁,1992。
    王乾盈、張建興、林祖慰,集集大地震:薄皮逆衝理論之傑作?,中國地質學會八十九年年會暨學術研討會,第96-99頁,台北,2000。
    中央氣象局,中央氣象局網站災害性地震報導(1999年集集地震),2000。
    中央氣象局,中央氣象局網站災害性地震報導(2002年花蓮地震),2002。
    中央氣象局,中央氣象局網站地震報導(2003年成功地震),2003。
    台灣省水利局,石岡壩工程計畫報告:地質測量,台中,1976。
    台灣省水利處,台灣地區地下水觀測網計畫81-83年度技術成果彙編,共113頁,1995。
    台灣省自來水公司,台灣省自來水公司水質研究中心1987-1988年水質統計分析,1989。
    朱傚祖、李建成、詹瑜璋、盧佳遇、胡植慶、饒瑞鈞、姜國彰、張勝雄、鍾令和、紀建梅,2003年2003年成功地震成功地震同震地表破裂:池上斷層之再活動,中國地質學會九十三年年會暨學術研討會論文集,第50頁,新竹, 2004。
    李民,地震引致地下水位動態異常之行為解析,台灣大學地質系,博士論文,台北,2002。
    李錫堤,彰化斷層恐引大地震不亞於1999年集集中市應戒備,中央大學網站祕書室新聞組(2004年 9月 13日 ),2004。
    汪成民,地下水位動態異常與地震短臨預報,地震出版社,第173-192頁, 1993。
    林允斌、陳主惠、黃柏壽、譚義績, 集集地震後水井水位變化模擬分析,臺灣水利,第49卷,第3期,第30-41頁,2001。
    林呈、孫洪福,見證1999年集集大地震-震災成因與因應對策,麥格羅∙希爾公司臺灣分公司,923頁,2000。
    林冠全、余騰鐸,台灣中部地區1999年集集地震之應力場變化,中國地質學會九十一年年會暨學術研討會,第200-203頁,台南, 2002。
    馬國鳳,集集大地震破裂行為,台灣之活動斷層與地震災害研討會,第5-9頁,2002。
    陳暐家,地震引致地下水位動態異常之行為解析,立德管理學院,資源與環境管理研究所,碩士論文,台南, 2003。
    陳文山,從古地震研究看九二一集集大地震,科學發展 350期26-30頁,2002。
    陳智豪、陳宏宇,南投九份二山岩石材料之工程地質特性,中國地質學會九十年年會暨學術研討會,第163-165頁,台北,2001
    黃世偉、林淑真、陳暐家、李宗仰、簡錦樹 ,地震之地下水位異常分類及其物理隱意,中國地質學會九十一年年會暨學術研討會,第200-203頁,台南, 2002。
    黃鑑水、謝凱旋、陳勉銘 埔里五萬分之一臺灣地質圖圖幅第三十二號,經濟部中央地質調查所,台北,2000。
    楊長義、李偉強、顏國慶,由應立場看車籠埔斷層之東轉左移之現象,中國地質學會九十年年會暨學術研討會論文集,第91-92頁,台北, 2000。
    經濟部工業研究院能資所,台灣都會區之環境地質資料庫,霧峰、石岡(比例 1/5000) ,新竹,1989。
    經濟部水利署,民國八十八(1999)年水文年報,台中,2000。
    經濟部水利署,地震前後地下水位異常變化之研究,計畫成果報告書(5/5),台中,2006。
    經濟部水資源局,台灣地區地下水觀測網整體計畫第一期(81-87年度)成果彙編,共364頁,台北,1999。
    經濟部中央地質調查所,臺灣地質概論,台北,1986。
    經濟部中央地質調查所,臺灣地質圖幅(圖幅第17、18、24、25、30、32、36、37、38、39),台北,1999-2002。
    農委會水土保持局,1999年集集地震九份二山災害處理,台北,2001。
    劉賢淋,結構動力學分析入門,天佑出版社,共568頁,台北, 1992。

    Al-Amoudi, O.S.B., Sulphate attack and reinforcedment corrosion in plain and blended cements exposed to sulphate environments. Building and environment 33: 53-61, 1998.
    Almendinger, R.W., and Shaw, J.H., Estimation of fault propagation distance from fold shape: implications for earthquake hazard assessment. Geology 28: 1099-1102, 2000.
    Berner, R.A., Principal of Chemical Sedimentology. McGraw-Hill: New York., 1971.
    Berryman, J.G., Elastic wave attenuation in rocks containing fluids. Applied Physics Letters 49: 552-554, 1986.
    Berryman, J.G., Seismic wave attenuation in fluid-saturated porous media. Pure and Applied Geophysics 128: 423-432, 1988.
    Bodvarsson, G., Confined Fluids as Strain Meters, Journal. Geophysical Research 75: 711-2718, 1970.
    Cattin, R., Loevenbruck A., and Le Pichon X., Why does the co-seismic slip of the 1999 Chi-Chi (Taiwan) earthquake increase progressively northwestward on the plane of rupture? Tectonophysics 386: 67-80, 2004.
    Chai, B.H.T., Structure and tectonic evolution of Taiwan. American Journal of Science 272: 389-422, 1972.
    Chang, S.L., Subsurface geology study of the Taichung Basin, Taiwan. Petroleum Geology of Taiwan 8: 21-45, 1971.
    Chi, W.R., and Huang, H.M., Nannobiostratigraph and paleo-enviroments of the late-Neogene sediments and their tectonic implications in the Miaoli area, Taiwan. Petroleum Geology of Taiwan 18: 111-129, 1981.
    Chi, W.R., Chang, S.L., Neogene nannoplankton biostratigraphy in Taiwan and the tectonic implications. Petroleum Geology of Taiwan 19: 93-147, 1983.
    Chia, Y.P., Wang, Y.-S., Chiu, J.-J., and Liu, C.-W., Changes of groundwater level due to the 1999 Chi-Chi earthquake in the Choshui river alluvial fan in Taiwan. Bulletin of the Seismological Society of American 91 : 1062-1068, 2001.
    Chu, B.L., Hsu, S.C., and Chang, Y.M., Ground behavior and liquefaction analyses in central Taiwan-Wufeng. Engineering Geology 71: 119-139, 2003.
    Corvo, F., Mendoza, A.R., Autie, M., and Betancourt, N., Role of water adsorption and salt content in atmospheric corrosion products of steel. Corrosion Science 39: 815-820, 1997.
    Covey, M., Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep. Petroleum Geology of Taiwan 20: 53-83, 1984.
    Davis, P.M., Rubinstein, J.L., Liu, K.H., Gao, S.S., and Knopoff, L., Northridge earthquake damage caused by geological focusing of seismic wave. Science 289: 1746-1750, 2000.
    Djuric, M., Ranogajec, J., Omorjan, R, and Mileti, C.S., Sulphate corrosion of Portland cement-pure and blended with 30% of fly ash. Cement and Concrete Research 26: 1295-1300, 1996.
    Erslev, E.A., Trishear fault-propagation folding. Geology 19: 617-620, 1991.
    Freeze, R.A., and Cherry, J.A., Groundwater, Prentice-Hall, Englewood Cliffs, N.J., 1979.
    Glaser, S.D., and Leeds, A. L., Estimation of system damping at the Lotung site by application os system identification. NIST GCR 96-700, National Institute of Standards and Technology: Gaithersburg, MD, 1996.
    Glaser, S.D., and Baise, L.G., System identification estimation of damping and model of frequencies at the Lotung site. Soli Dynamics and Earthquake Engineering 19: 521-531, 2000.
    Grecksch, G., Roth, F., and Kumpel, H. J., Coseismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions. Geophysical Journal International 138: 470-478, 1999.
    Ho, C.-S., Thrust structure in Taichung and Nantou. Central Taiwan. Taiwan Geology Survey Bulletin 11: 65-70, 1959.
    Hubbert, M.K., Rubey, W.W., Role of fluid pressure in mechanism of overthrust faulting. 1. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin 70: 115-166, 1959.
    Hu, J.-C., Yu, S.-B., Angelier, J., and Chu, H.-T., Active deformation of Taiwan from GPS measurement and numerical simulation and GPS studies, Journal of Geophysical Research 106: 2265-2280, 2001.
    Hu, J.-C., Chen, H.-S., and Ma, C.-H., Coseismic deformation and static stress changes following by Chi-Chi earthquake in Taiwan. Poster in annual meeting of American Geophysical Society, San Francisco, CA, USA, 2001.
    Huang, C.-C., Lee, Y.-H., Liu, H.-P., Keefer, D.K., and Jibson, R.W., Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America 91: 953-958, 2001.
    Huang, S.-W., Jean, J.-S., and Hu, J.-C., Huge rock eruption caused by the 1999 Chi-Chi earthquake in Taiwan. Geophysical Research Letters 30: 1858-1861, 2003.
    Husen, S., Taylor, R., Smith, R.B., and Healser, H., Changes in geyser eruption behavior and remotely triggered seismicity in Yellow national park by the 2002 Mw = 7.9 Denali fault earthquake, Alaska. Geological Society of America 32: 537-540, 2004.
    Ishiguro, M., Akaike, H., Ooe, K. and Nakai, S., A Bayesian approach to the analysis of earth tides. Proceeding of the Ninth International Symposium on Earth Tides, 283-292, 1985.
    Jean, J.-S., Liu, C.-C., Jiang, W.-T., Chow, J., Yu, T.-T., Lin, C.-W., and Huang, S.W., Role of fluids in surface deformation caused by the 1999 Chi-Chi earthquake in Taiwan. Earth Surface Processes and Landforms 27: 1-10, 2002.
    King, G.C.P, and Vita-Finzi C., Active folding in the Algerian earthquake of October 1980. Nature 292: 22-26, 1981.
    King, C. Y., Azuma, S., Igarashi, G., Ohno, M., Saito, H., and Wakita, H., Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan, Journal of Geophysical Research 104: 13073-13081, 1999.
    Koizumi, N., Kano, Y., Kitagawa, Y., Sato, T., Takahashi, M., Nishimura, S., and Nishida, R., Groundwater anomaliesassociated with the 1995 Hyogo-ken Nanbu earthquake. Journal Physics Earthe 44: 373-380, 1996.
    Koizumi, N., and Tsukuda, E., Preseismic changes in groundwater level and volumetric strain associated with earthquake swarms off the east coast of the Izu Peninsula, Japan. Geophysical Research Letters 26: 3509-3512, 1999.
    Kumpel, H.J., Poroelasticity: parameters reviewed. Geophysical Journal International 105: 783-799, 1991.
    Lacchenbruch, A. H., Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical Research 85: 6097-6112, 1980.
    Laitinen, T., Localized corrosion of stainless steel in chloride, sulphate and thiosulphate containing environments. Corrosion Science 42: 421-441, 2000.
    Lee, T. C. and Delaney, P. T., Frictional heating and pore pressure rise due to a fault slip. Geophys. J. R. Astr. Soc. 88: 569-591, 1987.
    Lee, M., Liu T.-K., Ma K.-F., and Chang Y.-M., Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan. Geophysical Research Letters 29 doi:10.1029/2002GL015116, 2002.
    Lee, T.-Y., Lin S.-C., Chen W.-C., Chiu F.-S., and Lee Y.-P., Intervention pattern and detection analysis for anomaly groundwater level time series. The 2nd Taiwan-Japan joint workshop on hydrological research for earthquake prediction, Tainan, Taiwan, 17-21, 2003.
    Lin, C.-H., Yeh, Y.-H., and Roecker, S.-W., Seismic velocity structures in the Sanyi-Fengyuen area, Central Taiwan. Proceeding of Geological Society of China 32: 101-120, 1989.
    Lin, C.-H., The 1999 Taiwan earthquake:A proposed stress-focusing, heel-shaped model. Bulletin of Seismological Society of America 91: 1053-1061, 2001.
    Lin, A., Chen, A., Liau, C.F., Lee, C. T., Lin, C.C., Lin, P. S., Wen, S.C., and Ouchi, T., Frictional fusion due to coseismic landsliding during the 1999 Chi-Chi (Taiwan) ML 7.3 earthquake. Geophysical Research Letters 28 : 4011-4014, 2001.
    Mitra, S., Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. American Association of Petroleum Geologist Bulletin 74: 921-945,1990.
    Ma, K.-F., Mori, J., Lee, S.-J., and Yu S.-B., Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America 91: 1069-1087, 2001.
    Montgomery, D.R., and Manga, M., Streamflow and water well response to earthquake. Science 300: 2047-2049, 2003.
    Nur, A., Dilatancy, pore fluids, and premonitory variations in ts/tp travel times. Bulletin of the Seismological Society of America 62: 1217-1222, 1972.
    Okada, Y., Internal deformation due to shear and tensile fault in a half-space. Bulletin of the Seismological Society of America 82: 1018-1040, 1992.
    Quilty, E., and Roeloffs, E., Water level changes in response to the December 20, 1994 M=4.7 earthquake near parkfield, California. Bulletin of the Seismology Society of America 87: 310-317, 1997.
    Rice, J.R., and Cleary, M.P., Some basic stress diffusion solution for fluid-saturated elastic porous media with compressible constituents. Review of Geophysics and Space Physics 14: 227-241, 1976.
    Roeloffs, E.A., Fault stability changes induced beneath a reservoir with cyclic variations in water level. Journal of Geophysical Research 93(B3): 2107-2124, 1988.
    Roeloffs, E.A., Poroelastic techniques in the study of earthquake-related hydrologic phenomena, in Advances in Geophysics, edited by R. Dmowska, Academic, San Diego, California 137: 135-195, 1996.
    Roeloffs, E., and Quilty, E., Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, Earthquake. Pure and Applied Geophysics 149: 21-60, 1997.
    Roeloffs, E.A., Persistent water level changes in a well near Parkfield, California, due to local and distant Earthquake. Journal of Geophysical Research 103: 869-889, 1998.
    Rojstaczer, S., Determination of fluid flow properties from the response of water levels in wells to atmospheric loading. Water Resources Research 24(11) : 1927-1938, 1988.
    Rojstaczer, S., Intermediate period response of water levels in wells to crustal strain: Sensitivity and noise level. Journal of Geophysical Research 93: 13619-13634.
    Rojstaczer, S., and Wolf, S., Hydrologic changes associated with Loma Prieta drainage basins. U. S. Geological Survey Professional Paper 1151E 51-64, 1994.
    Rudnicki, J.W., Yin, J., and Roeloffs, E.A., Analysis of water level changes induced by creep at Parkfield, California. Journal of Geophysical Research 98 (B5) : 8143-8152, 1993.
    Seed, B., and Lee, K., Liquefaction of saturated sands during cyclic loading. JSMFD, ASCE 92( SM) : 105-134, 1996.
    Scholz, C.H., The mechanic of earthquake and faulting. Cambridge Univ. Press, 1990.
    Sherard, J.L., Dunningan, L.P., Decker, R.S., Identification and nature of dispersive solis. Journal of the Geotechnical Engineering 102: 287-301, 1976.
    Shou, K.J. and Wang, C.F., Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan. Engineering Geology 68: 237-250, 2003.
    Skempton, A.W., The pore-pressure coefficients A and B. Geotechnique 4 :143-147, 1954.
    Stein R.S., and King, G.C., Seismic potential revealed by surface folding: 1983 Coalinga, California earthquake. Science 224: 869-872, 1984.
    Student, The probable error of a mean. Biometrika 6 : 1-25, 1908.
    Suppe, J., Imbricated structure of western foothill belt, south-central Taiwan. Petroleum Geology Taiwan 17: 1-16, 1980.
    Suppe, J., Geometry and kinematics of fault-bend folding. American Journal of Science 283: 684-721,1983.
    Suppe J., Principle of Structural Geology. Prentice-Hall: London, 1985.
    Suppe J., The active Taiwan mountain belt. In The Anatomy of Mountain Range. Schaer JP, Rodgers J (eds). Princeton University Press: New Jersey; 277-293, 1987.
    Suppe, J., Structural geologic insight into the Chi-Chi earthquake, in 20th Annual Meeting of the Geological Soc. of China, March 30-31, 2000, p. 1, Academic Sinica, Taipei, Taiwan, 2000.
    Suppe J., and Wittke, J.H., Abnormal pore-fluid pressure in relation to stratigraphy and structure in the active fold and thrust belt of northwestern Taiwan. Petroleum Geology of Taiwan 14: 11-24, 1977.
    Suppe J, and Namson J., Fault-bend origin of frontal folds of the western Taiwan fold and thrust belt. Petroleum Geology of Taiwan 16: 1-17, 1979.
    Tamura, Y., Sato, T., Ooe, M. and Ishiguro, M., A procedure for tidal analysis with a Bayesian information criterion. Geophys. J. Int. 104: 507-516, 1991.
    Timoshenko, S., Young, D.H., and Weaver, JR. W., Vibration problems in engineering. John Wiely & Sons, Inc, 521, 1974.
    USGS, Landslide at Mount St. Helens volcano triggers explosive eruption on May 18, 1980. USGS Volcano Hazards Program, worldwide web: http://www.usgs.gov, 2002.
    Voight, B. and Faust, C., Frictional heat and strength loss in some rapid landslide. Geotechnique 32 (1) : 43-54, 1982.
    Wakia, H., Water wells as possible indicateors of tectonic strain. Science 189: 553-555, 1975.
    Wang, H.-F., Quasi-static poroelastic parameters in rock and their geophysical applications. Pure and Applied Geophysics 141: 269-286, 1993.
    Wang, W.-H., Static stress transfer and aftershocks triggering by the Chi-Chi earthquake in Taiwan. TAO 11: 631-642, 2000.
    Wang, C.-Y., Chang, C.-H., and Yeh, H.-Y., An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model. TAO 11: 609-630, 2000.
    Wang, C.-Y., Cheng, L.-H., Chin,C.-V., and Yu, S.-B., Coseismic hydrologic response of an alluvial fan to the Chi-Chi earthquake, Taiwan. Geology 29 (9): 831-834, 2001.
    Wang, C.-Y., Dreger, D.-S., Wang, C.-H., Mayer, D., and Berryman, J. G., Field relations among coseismic ground motion, water level changes and liquefaction for the 1999 Chi-Chi (Mw = 7.5) earthquake, Taiwan. Geophysical Research Letters 30 :doi:10.1029/2003GL017601, 2003.
    Wang, W.N., Chigira, M., and Furuva, T., Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide by the Chi-Chi earthquake in central Taiwan. Engineering Geology 69: 1-13, 2003.
    Wang, C.-Y., Wang, C.-H., and Manga, M., Coseismic release of water from mountains: Evidence from the 1999 (Mw = 7.5) Chi-Chi, Taiwan, earthquake. Geology 32: 769-772, 2004.
    Wu, F.T., Rau, R.-J., and Salzberg, D., Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics 274: 191-220, 1997.
    Yamamoto, R., Iwashima, T., and Sanga, N. K., An Analysis of Climatic Jump. Meteor. Soc. Japan 64 ( 2 ) : 273-281, 1986.
    Yeh, Y.H., Barrier, E., Lin, C.H., and Angelier, J., Stress tensor analysis in the Taiwan area from focal mechanism of earthquakes. Tectonophysics 200: 267-280, 1991.

    下載圖示 校內:立即公開
    校外:2006-06-19公開
    QR CODE