| 研究生: |
羅泳勝 Lo, Yung-Sheng |
|---|---|
| 論文名稱: |
以反應曲面實驗設計法探討本土厭氧產氫菌Clostridium butyricum CGS2之最佳醱酵產氫條件 Using response surface methodology to determine optimal conditions for fermentative H2 production with an indigenous anaerobic H2-producing bacterium Clostridium butyricum CGS2 |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 反應曲面實驗設計法 、生物產氫 、梭孢桿菌 |
| 外文關鍵詞: | Clostridium butyricum, response surface methodology, biohydrogen |
| 相關次數: | 點閱:107 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究由高效能厭氧產氫污泥篩選出Clostridium butyricum CGS2純菌,初步測試發現其具優異之產氫效能,並以碳源濃度、溫度與pH為主要變因,利用回應曲面實驗設計法(Response surface methodology,簡稱RSM)探討該產氫菌株之最佳產氫條件。首先利用搖瓶批次實驗進行不同碳源種類與其濃度一次因子的測試,實驗中pH值不予以控制,結果顯示以蔗糖20000 mg COD/l為碳源時,有最佳的產氫速率為262.3 ml/h/l,故利用此結果進一步於醱酵槽中針對不同pH值控制與蔗糖濃度的測試,來找尋RSM設計之中心混成實驗的中心點。結果顯示以pH值5.5及蔗糖濃度為20000 mg COD/l時,氫氣產率為最佳(2.25 mol H2/mol sucrose),且氫氣產量可高達4.9 l,故以此條件為中心點來設計RSM實驗。由RSM法求得氫氣產率之最佳條件為pH 5.2、溫度 35.1oC、蔗糖濃度 22.5 g COD/l,此條件之氫氣濃度為58.5%,其產氫速率為0.54 l/h/l,總產氫量為7.2 l,氫氣產率可達2.91 mol H2/mol sucrose。而以RSM求得產氫速率之最佳條件為pH 5.36、溫度35.1 oC、蔗糖濃度26.1 g COD/l,其氫氣濃度為63.3%,氫氣產率為3.26 mol H2/mol sucrose,總產氫量為10.5 l,產氫速率可達0.50 l/h/l。實驗結果並證實以RSM法所得之最佳化培養條件,確能進一步提升C. butyricum CGS2之產氫效率。
隨後利用RSM實驗所得之最佳條件,進行連續醱酵產氫測試。結果發現pH值太低不適合細胞生長,在HRT=12 h時即為成菌體濃度洗出,但若將pH值控制在6.5時則有最佳之產氫效果。因此,便以修正後之醱酵條件進行不同HRT之連續醱酵產氫。結果比照對照組發現當操作於HRT=8 h時,氫氣產率已從0.70 mol H2/mol sucrose提升到5.31 mol H2/mol sucrose,增加了7倍左右,且產氫速率也由0.11 l/h/l提升到0.90 l/h/l,氫氣濃度也大幅度上升為50%。隨著HRT之調降,產氫效率也隨之提升,且當操作在HRT=3 h時,有最佳之產氫速率為1.34 l/h/l,其氫氣產率為 4.40 mol H2/mol sucrose。最後,利用此連續醱酵產氫結果來進行動力學模擬,以不同稀釋速率D(h-1)、細胞濃度X(g/l)、蔗糖濃度S(g/l)、產氣濃度PG,i (mol/l)和液相代謝物濃度PL,i(mg COD/l)為參數來建構此model,而以此model來描述在連續產氫時,各個參數間之相對關係。
Abstract
In this study, an indigenous Clostridium butyricum CGS2 strain was isolated from highly efficient anaerobic hydrogen-producing sludge. Preliminary tests show that the C. butyricum CGS2 strain exhibited good hydrogen producing activity. Response surface methodology (RSM) was then applied to identify the optimal conditions for hydrogen production of C. butyricum CGS2 using carbon substrate concentration, temperature and pH as the primary operation parameters. First, one-level experiments were done in shake flasks to examine which type and concentration of carbon source was most efficient for hydrogen production. The results show that sucrose at a concentration of 20000 mg COD/l gave the highest hydrogen production rate (vH2) of 262.3 ml/h/l. Based on this result, the effect of pH and sucrose concentration on hydrogen production was further investigated in a fermenter to determine the center point for RSM experimental design. It was found that at a pH of 5.5 and a sucrose concentration of 20000 mg COD/l, the highest hydrogen yield (YH2) of 2.25 mol H2/mol sucrose was obtained, as total hydrogen production was nearly 4.9 l. Hence, the aforementioned conditions was used as the center point for RSM design. Using YH2 as the performance index, the optimum condition predicted from RSM was pH=5.2, temperature=35.1oC, and sucrose concentration=22.5 g COD/l. Under this condition, the hydrogen content was 58.5%, vH2 was 0.54 l/h/l, total hydrogen production was 7.2 l, and YH2 was 2.91 mol H2/mol sucrose. On the other hand, when vH2 was used as the performance index, the optimum condition was pH=5.36, temperature=35.1 oC, and sucrose concentration=26.1 g COD/l. This condition gave a hydrogen content of 63.3%, a YH2 of 3.26 mol H2/mol sucrose, total hydrogen production of 10.5 l, and a vH2 of 0.50 l/h/l. The validity of RSM predictions was confirmed by experimental results, suggesting that using RSM design could attain an optimal culture condition for C. butyricum CGS2 to enhance its hydrogen production performance.
In the next experiments, the optimal culture condition predicted by RSM design was used to perform continuous hydrogen production in a CSTR process. It was found that the pH (5.36) was too low to limit cell grow, resulting in cell wash-out even at a high HRT of 12 h, whereas maximal hydrogen production performance was attained when the pH was controlled at 6.5. Therefore, the culture condition for continuous hydrogen fermentation was modified by using pH 6.5 instead of 5.36. With the modified condition, the reactor was operated at a progressively decreased HRT from 8 h to 2 h. The results show that operation at HRT=8 h allowed a 7 fold increase (from 0.70 to 5.31 mol H2/mol sucrose) in hydrogen yield when compared with control run. The hydrogen production also marked increased from 0.11 l/h/l to 0.90 l/h/l. The hydrogen content increased to 50%. As the HRT decreased, the hydrogen producing efficiency increased. The highest hydrogen production rate (1.34 l/h/l) and yield (4.40 mol H2/mol sucrose) was obtained when the system was operated at HRT=3 h. Finally, the experimental results were subject to numerical simulation with a steady-state kinetic models, and the model appeared to describe the data satisfactorily well.
Ausubel F. M., Short protocols in molecular biology., Greene Pub. Associates and Wiley-Interscience p.1-20~1-21 ,1992
Bailey J. E., Ollis D. F., Biochemical engineering fundamentals, 2nd edn., McGraw-Hill, New York, 1986
Benemann J. R., Feasibility analysis of photobiological hydrogen production, Int. J. Hydrog. Energy, 22, 979-987,1997
Benemann J. R., Miyamoto K., and Hallenbeck P. C., Bioengineering aspects of biophotolysis. Enzyme Microbial. Technol. 2, 103-11, 1980
Benemann J. R., Berenson J. A., Kaplan N. O., and Kauren M. D., Hydrogen evolution by a chloroplast-fereedoxin-hydrogenase system. Proc. Natl. Acad. Sci. USA. 70, 23, 17-20, 1973
Box G. E. P., and Wilson K. B., On the experimental attainment optimum conditions. J. Roy. Statist. Soc. B13:1-45, 1951
Box G. E. P., Hunter W., and Hunter J. S., Statistics for experimenters. John WILEY and Sons, Inc., New York., 1978
Brosseau J. D., and Zajic J. E., Continuous microbial production of hydrogen gas. Int. J. Hydrogen Energy. 7, 623-8, 1982
Burns L. D., McCormick J. B., and Borroni-Bird C. E., Vehicle of change, Scientific American, New York, Oct 2002, 287, 4, 41-49, 2002
Calvin M., and Taylor S.E., Fuels from algae. In: Cresswell RC, Rees TAV, Shah N, editors. Algal and cyanobacterial biotechnology. London: Longman Scientific and Technical. p. 137-160, 1989
Chen C. C., Lin C. Y., and Chang J. S., Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate, Appl. Microbiol Biotechnol., 57, 56-64, 2001
Chen. W. M., Tseng Z. J., Lee K. S., and Chang J. S., Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy, 30, 1063-1070, 2005
Chin H. L., Chen Z. S., and Chou C. P., Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production, Biotechnol Prog, 19, 383-388, 2003
Current protocols in molecular biology, Appendix 3D.1~3D.3, J. Wiley and Sons, 1992
Das D., and Veziroglu T. N., Hydrogen production by biological processes: a survey of literature, Int. J. Hydrog. Energy, 26, 13-28, 2001
Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., and Smith F., colorimetric Method for Determination of Sugars and Related Substances. Anal Chem., 28, 350-356, 1956
Endo G., Noike T., and Matsumoto J., Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic disgestion, Proc. Soc. Civ. Engrs., No. 325, pp. 61-68, Japanese, 1982
Fan Y., Li C., Lay J. J., Hou H. W., and Zhang G. S., Optimization of initial substrate and pH levels for germination of sporing hydrogen-producting anaerobes in cow dung compost. Bioresource Technol., 91, 189, 2004
Fang H. H. P., and Liu H., Effect of pH on hydrogen production from glucose by a mixed culture, Bioresour. Technol., 82(1), 87-93, 2002
Gaffron H, and Rubin J., Fermentative and photochemical production of hydrogen by algae. J. Gen. Physiol. 26, 219-40, 1992
Hawkes F. R., Dinsdalea R., Hawkesb D. L., and Hussyb I., Sustainable fermentative hydrogen production: challenges for process optimization,
Int. J. Hydrog. Energy, 27, 1339–1347, 2002
Healey F. P., Hydrogen evolution by several algae. Planta. 91, 220, 1970
Hemant J., Purohit A. K., Aditi A. M., and Gurpreet N., A novel approach for extraction of PCR-compatible DNA from activated sludge samples collected from different biological effluent treatment plants, J. Microbiol. Methods, 52, 315–323, 2003
Himmelblau D. M., Process analysis by statistical methods. John Wiley and sons, Inc., New York, pp.230-292, 1970
Kataoka N., Miya A., and Kiriyama K., Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria, Wat. Sci. Tech., 36, 41-47, 1997
Khuri A. I., and J. A. C. Cornell, Response Surfaces:Designs and Analysis. John Wiley and Sons, New York.
Kumar N., and Das D.,Continuous hydrogen production by immobilized Enterobacter cloacae ⅡT-BT 08 using lignocellulosic materials as solid matrices. Enzyme and Micro. Technol. 29, 280-287, 2001
Kumar N., and Das D., Production of pollution free gaseous fuel. Patent application #473/2000/Cal. India, 2000
Kumar N., Monga P. S., Biswas A. K., and Das D., “Modeling and simulation of cleaner fuel production.” Int. J. Hyd. Energy. 25, 945-52, 2000
Kumar N., and Das D., Production and purification of alpha-amylase from hydrogen producing Enterobacter cloacae ⅡT-BT 08. Bioprocess Eng. 23, 205-8, 2000
Kumar N., and Das D., Enhancement of hydrogen production by Enterobacter cloacae ⅡT-BT 08. Process Biochem. 35, 589-94, 1999
Kumar D., and Kumar H. D., Effect of monochromatic lights on nitrogen fixation and hydrogen evolution in the isolated hetrocysts of Anabaena sp. strain CA. Int. J. Hydrogen Energy. 16, 397-401, 1991
Kumazawa S., and Mitsui A., Characterization and optimization of hydrogen photoproduction by saltwater blue-green algae, Oscillatoria Sp. Miami BG7: Enhancement through limiting the supply of nitrogen nutrient. Int. J. Hydrogen Energy. 6, 339-48, 1981
Lay J. J., Lee Y. J., and Noike T., Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Wat. Res. Ⅱ, 33, 2579-2586, 1999
Lambert G. R., and Smith G.D., The hydrogen metabolism of cyanobacteria (blue-green algae). Biol. Rev. 56, 589-660, 1981
Lee J. W., and Greenbaum E., A new perspective on hydrogen production of photosynthetic water splitting. In: Saha BC, Woodward J, editors. Fuels and chemical for biomass, ACS Symposium Series, Washington: ACS. Vol. 666, 209-22, 1997
Lin C. Y., and Chang R. C., Hydrogen production during the anaerobic acidogenic conversion of glucose, J. Chem. Technol. Biotechnol., 74, 498-500, 1999
Morntgomery D. C., Design and analysis of experiments. John Wiley and Sons, Inc., New York., 1984
Miyake J., Zaborsky (eds), Plenum P., Biohydrogen., New York, 1998
Mizuno O., Dinsdale R., Hawkes F. R., Hawkes D. L., and Noike T., Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresour. Technol., 73, 59-65, 2000
Newsweek, April 8-15, 2002
Rachman M. A., Furutani Y., Nakashimada Y., Kakizono T., and Nishio N., Enhanced Hydrogen Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter aerogenes, J. Fermen. Bioeng., 83(4), 358-363, 1997
Ramachandran R., Menon R. K., An overview of industrial uses of hydrogen, Int. J. Hydrog. Energy, 23, 593-598, 1998
Rosen M. A., and Scott D. S., Comparative efficiency assessments for a range of hydrogen production processes, Int. J. Hydrog. Energy, 23, 653-659, 1998
Rachman M. A., Nakashimada Y., Kakizono T., and Nishio N., Hydrogen production with high evolution rate by self-flocculate cells of Enterbacter aerogenes in a packed-bed reactor. Appl. Microbiol., 49, 450-454 , 1998
Rachman M. A., Furutani Y., Kakizono T., and Nishio N., Enchanced hydrogen production in altered mixed acid fermentation of glucose by Enterbacter aerogenes J.Ferment.Bioeng., 83, 358-363, 1997
Sarker S., Pandey K. D., and Kashyap A. K., Hydrogen photoproduction by filamentous non-heterocystous cyanobacterium Pleatonema boryanna and simultaneous release of ammonia. Int. J. Hydrogen Energy. 17, 689-94, 1992
Shuler M. L., Kargi F., Bioprocess engineering, Prentice-Hall, Englewood Cliffs,NJ
Stewar W. D. P., “Some aspects of structure and function in N2-fixing cyanobacteria.” Annu. Rev. Microbiol. 34, 497-536, 1980
Subramanian G., Kaushik B. D., and Venkatraman G. S., Cyanobacterial biotechnology. USA: Science Pub. Inc, 1998
Tanisho S., Biological hydrogen production by fermentation., Proceedings of the Second International Conference on New Energy Systems & Conv., Istanbul. p. 311-6, 1995
Tanisho S., Wakao N., and Kokako Y., Biological hydrogen production by Enterobacter aerogenes. J. Chem. Eng. Jpn. 16, 529-30, 1983
Tanisho S., Suzuki Y., and Wakoo N., Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005. Int. J. Hydrogen Energy. 12, 623-7, 1987
Tasi Y. L., and Olson B.H., Rapid method for direct extraction of DNA from soil and sediments, Appl. Environ. Microbiol. 1070-1074, 1991
Thomas D., Michael T., John M., and Jack P., Biology of Microorganisms, Seventh edition, 77-80 ,1994
Ueno Y., Kawai T., Sato S., Otsuka S., and Morimoto M., Biological production of hydrogen from cellulose by natural anaerobic microflora, J. Fermen Bioeng, 79, 395-397, 1995
Van Ginkel S., Sung S., and Lay J. J., Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol., 35, 4726-4730, 2001
Van Lier J. B., Rebac S., and Lettinga G., High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions, Water Sci. Technol., 35(10), 199-206, 1997
Van Niel E. W. J., and Budde M. A. W., de Haas G. G., van der Wal F. J., Claassen P. A. M., and Stams A. J. M., Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii, Int. J. Hydrog. Energy, 27, 1391-1398, 2002
Vavilin V. A., Rytow S. V., and Lokshina L. Y., Modelling hydrogen partial pressure change as a result of competition between the butyricand propionicgroups of acidogenicbac teria. Bioresour Technol, 54, 171–177, 1995
Veziroglu T. N., Twenty years of the hydrogen movement 1974-1994, Int. J. Hydrog. Energy, 20, 1-7, 1995
Yokoi H., Aratake T., Hirose J., Hayashi S., and akasaki,Y., Simultaneous production of hydrogen and bioflocculant by Enterobacter sp. BY-29, World J Microbiol Biotechnol 17(6), 609-13 , 2001
Yokoi H., Tokushige T., Hirose J., Hayashi S., and Takasaki Y., H2 production from starch by a mixed culture of Clostridium butyricum and Entobacter aerogenes. Biotecbnology Letters, 20, 143-147, 1998
Yokoi H., Ohkawara T., Hirose J., Hayashi S., and Takasaki Y., Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J. Fermen Bioeng 80(6), 571-574 , 1995
Yokoi H., Mori M., Hirose J., Hayashi S., and Takasaki Y., H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett., 20, 895-899, 1998
Yu H. Q., Fang H. H. P., and Gu G. W., Comparative performance of mesophilic and thermophilic acidogenic upflow reactors, Process Biochem., 38(3), 447-454, 2002a
Yu H. Q., Zhu Z. H., Hu W. R., and Zhang H. H., Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures, Int. J. Hydrog. Energy, 27, 1359-1365, 2002b
Weare N. M., and Benemann J.R., Nitrogenase activity and photosynthesis by Plectonema boryanum 594. J. Bacteriol. 119, 158-68, 1874
Zaborsky O. R. (ed.) Biohydrogn. Plenum Press, New York, 1997
Zhang T., Liu H., Fang H. H. P., Biohydrogen production from starch in wastewater under thermophilic condition, J. Environ. Manage., 69, 149-156, 2003
王美雲、張嘉修,以Hydrogenase基因設計生物產氫菌功能性基因之核酸探針,第10屆生化工程研討會論文集,2005
王貴譽、張瑞烽,微生物學第五版,第24-29頁,1993
吳龍暉,用之不竭的乾淨氫氣能源,太陽能學刊,第4卷,第1期,第14-16頁,1999
李國興、林屏杰、張嘉修,以生物膜反應器進行連續氫氣醱酵,第7屆生化工程研討會論文集,2002a
李國興、陳惠莉、吳季芳、羅泳中、羅泳勝、張益盛、林屏杰、張嘉修,溫度對顆粒污泥程序醱酵產氫之影響,第28屆廢水處理技術研討會論文集, 2003
李國鏞、游若荻,微生物學,華香原出版社,第四版,第126-145頁, 1992
林秋裕、林明正,CSTR厭氧產氫反應槽之啟動及操作,逢甲大學土木與水利工程研究所碩士論文,2000
林凱隆,重金屬對厭氧消化法酸生成相之影響,逢甲大學土木與水利工程研究所碩士論文,1991
林祺能,固定化細胞產氫,逢甲大學化學工程系研究所碩士論文,2002
邵信,厭氣處理研發新方向—產氫技術,1997廢水處理技術研討會第二章,工研院,1997
洪哲穎、陳國誠,回應曲面實驗設計法在微生物酵素生產之應用,化工期刊,第39卷,第二期,第3-18頁,1992
范姜楷,以CSTR合併中空纖維微過濾膜組進行厭氣污泥連續式產氫醱酵,逢甲大學化學工程系研究所碩士論文,2002
范姜楷、林屏杰、張嘉修,以中空纖維膜生物反應器進行高效能厭氣產氫,第七屆生化工程研討會論文集,第543-549頁,2002
張仕旻,利用薄膜反應器於高溫厭氧產氫生物程序之研究,成功大學環境工程學系研究所碩士論文,2001
張嘉修、李國興、林屏杰、吳石乙、林秋裕,以環境生物技術生產清潔能源-氫氣,中國化學工程學會,第49卷第6期,第85-104頁,2002
陳國誠,廢水生物處理學,國立編譯館出版,第8-10頁,1991
曾重仁,氫能源技術簡介,太陽能學刊,第3卷,第2期,第9-11頁,1998
詹哲豪、林绣茹、顏瑞鴻、池華瑋,簡明微生物學,第五版,第41-72頁,2000
蔡水源,以生物技術生產氫氣—在CO2的分離、回收、在利用中研究出更潔淨的氫氣製造方法,電機月刊,第五卷,第十一期,第199-202頁,1995
蔡孟倫、李國興、林屏杰、張嘉修,CSTR系統醱酵產氫之溫度效應探討,第9屆生化工程研討會論文集,2004
賴俊吉,厭氧生物產氫技術發展近況,環境工程會刊,第24-29頁,2000
謝哲松,微生物生物學下冊,國立編譯館出版,第1245-1252頁,1995