簡易檢索 / 詳目顯示

研究生: 羅泳勝
Lo, Yung-Sheng
論文名稱: 以反應曲面實驗設計法探討本土厭氧產氫菌Clostridium butyricum CGS2之最佳醱酵產氫條件
Using response surface methodology to determine optimal conditions for fermentative H2 production with an indigenous anaerobic H2-producing bacterium Clostridium butyricum CGS2
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 179
中文關鍵詞: 反應曲面實驗設計法生物產氫梭孢桿菌
外文關鍵詞: Clostridium butyricum, response surface methodology, biohydrogen
相關次數: 點閱:107下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
      本研究由高效能厭氧產氫污泥篩選出Clostridium butyricum CGS2純菌,初步測試發現其具優異之產氫效能,並以碳源濃度、溫度與pH為主要變因,利用回應曲面實驗設計法(Response surface methodology,簡稱RSM)探討該產氫菌株之最佳產氫條件。首先利用搖瓶批次實驗進行不同碳源種類與其濃度一次因子的測試,實驗中pH值不予以控制,結果顯示以蔗糖20000 mg COD/l為碳源時,有最佳的產氫速率為262.3 ml/h/l,故利用此結果進一步於醱酵槽中針對不同pH值控制與蔗糖濃度的測試,來找尋RSM設計之中心混成實驗的中心點。結果顯示以pH值5.5及蔗糖濃度為20000 mg COD/l時,氫氣產率為最佳(2.25 mol H2/mol sucrose),且氫氣產量可高達4.9 l,故以此條件為中心點來設計RSM實驗。由RSM法求得氫氣產率之最佳條件為pH 5.2、溫度 35.1oC、蔗糖濃度 22.5 g COD/l,此條件之氫氣濃度為58.5%,其產氫速率為0.54 l/h/l,總產氫量為7.2 l,氫氣產率可達2.91 mol H2/mol sucrose。而以RSM求得產氫速率之最佳條件為pH 5.36、溫度35.1 oC、蔗糖濃度26.1 g COD/l,其氫氣濃度為63.3%,氫氣產率為3.26 mol H2/mol sucrose,總產氫量為10.5 l,產氫速率可達0.50 l/h/l。實驗結果並證實以RSM法所得之最佳化培養條件,確能進一步提升C. butyricum CGS2之產氫效率。

      隨後利用RSM實驗所得之最佳條件,進行連續醱酵產氫測試。結果發現pH值太低不適合細胞生長,在HRT=12 h時即為成菌體濃度洗出,但若將pH值控制在6.5時則有最佳之產氫效果。因此,便以修正後之醱酵條件進行不同HRT之連續醱酵產氫。結果比照對照組發現當操作於HRT=8 h時,氫氣產率已從0.70 mol H2/mol sucrose提升到5.31 mol H2/mol sucrose,增加了7倍左右,且產氫速率也由0.11 l/h/l提升到0.90 l/h/l,氫氣濃度也大幅度上升為50%。隨著HRT之調降,產氫效率也隨之提升,且當操作在HRT=3 h時,有最佳之產氫速率為1.34 l/h/l,其氫氣產率為 4.40 mol H2/mol sucrose。最後,利用此連續醱酵產氫結果來進行動力學模擬,以不同稀釋速率D(h-1)、細胞濃度X(g/l)、蔗糖濃度S(g/l)、產氣濃度PG,i (mol/l)和液相代謝物濃度PL,i(mg COD/l)為參數來建構此model,而以此model來描述在連續產氫時,各個參數間之相對關係。

    Abstract
     In this study, an indigenous Clostridium butyricum CGS2 strain was isolated from highly efficient anaerobic hydrogen-producing sludge. Preliminary tests show that the C. butyricum CGS2 strain exhibited good hydrogen producing activity. Response surface methodology (RSM) was then applied to identify the optimal conditions for hydrogen production of C. butyricum CGS2 using carbon substrate concentration, temperature and pH as the primary operation parameters. First, one-level experiments were done in shake flasks to examine which type and concentration of carbon source was most efficient for hydrogen production. The results show that sucrose at a concentration of 20000 mg COD/l gave the highest hydrogen production rate (vH2) of 262.3 ml/h/l. Based on this result, the effect of pH and sucrose concentration on hydrogen production was further investigated in a fermenter to determine the center point for RSM experimental design. It was found that at a pH of 5.5 and a sucrose concentration of 20000 mg COD/l, the highest hydrogen yield (YH2) of 2.25 mol H2/mol sucrose was obtained, as total hydrogen production was nearly 4.9 l. Hence, the aforementioned conditions was used as the center point for RSM design. Using YH2 as the performance index, the optimum condition predicted from RSM was pH=5.2, temperature=35.1oC, and sucrose concentration=22.5 g COD/l. Under this condition, the hydrogen content was 58.5%, vH2 was 0.54 l/h/l, total hydrogen production was 7.2 l, and YH2 was 2.91 mol H2/mol sucrose. On the other hand, when vH2 was used as the performance index, the optimum condition was pH=5.36, temperature=35.1 oC, and sucrose concentration=26.1 g COD/l. This condition gave a hydrogen content of 63.3%, a YH2 of 3.26 mol H2/mol sucrose, total hydrogen production of 10.5 l, and a vH2 of 0.50 l/h/l. The validity of RSM predictions was confirmed by experimental results, suggesting that using RSM design could attain an optimal culture condition for C. butyricum CGS2 to enhance its hydrogen production performance.
     
     In the next experiments, the optimal culture condition predicted by RSM design was used to perform continuous hydrogen production in a CSTR process. It was found that the pH (5.36) was too low to limit cell grow, resulting in cell wash-out even at a high HRT of 12 h, whereas maximal hydrogen production performance was attained when the pH was controlled at 6.5. Therefore, the culture condition for continuous hydrogen fermentation was modified by using pH 6.5 instead of 5.36. With the modified condition, the reactor was operated at a progressively decreased HRT from 8 h to 2 h. The results show that operation at HRT=8 h allowed a 7 fold increase (from 0.70 to 5.31 mol H2/mol sucrose) in hydrogen yield when compared with control run. The hydrogen production also marked increased from 0.11 l/h/l to 0.90 l/h/l. The hydrogen content increased to 50%. As the HRT decreased, the hydrogen producing efficiency increased. The highest hydrogen production rate (1.34 l/h/l) and yield (4.40 mol H2/mol sucrose) was obtained when the system was operated at HRT=3 h. Finally, the experimental results were subject to numerical simulation with a steady-state kinetic models, and the model appeared to describe the data satisfactorily well.

    目錄 中文摘要……………………………………………………………I Abstract…………………………………………………III 致謝 ………………………………………………………VI 目錄 ……………………………………………………VIII 表目錄……………………………………………………XVI 圖目錄……………………………………………………XIX 第一章 緒論 ………………………………………………1 1-1研究動機 ………………………………………………1 1-2 研究目的………………………………………………3 第二章 文獻回顧及原理 …………………………………5 2-1 生物產氫的優點與應用………………………………5 2-2 產氫方法………………………………………………7 2-2-1 熱化學法……………………………………………7 2-2-2 電化學法……………………………………………8 2-2-3 生物法………………………………………………8 2-2-3-1 生物光合作用產氫 ……………………………12 2-2-3-2-1 直接生物光解作用(direct biophotolysis) ………………………………………………12 2-2-3-2-2 間接生物光解作用(indirect biophotolysis) ……………………………14 2-2-3-2 生物醱酵作用之產氫過程……………15 2-2-3-2-1 光醱酵 ………………………………………15 2-2-3-2-2 暗醱酵 ………………………………………16 2-3 影響細胞生長的條件 ………………………………19 2-3-1 溫度……………………………………………19 2-3-2 酸鹼度(pH值)…………………………………21 2-3-3氧氣 ……………………………………………22 2-4細胞的營養需求與營養型別…………………………24 2-5內孢子菌………………………………………………26 2-5-1 激活 …………………………………………28 2-5-2 萌發孢子 ……………………………………28 2-5-3 生出菌體 ……………………………………29 2-5-4 梭孢桿菌屬(Clostridium)…………………30 2-6 產氫醱酵與氧化-還原平衡的關係…………………33 2-7 回應曲面法(Response surface methodology,簡 稱RSM)………………………………………………35 2-7-1 回應曲面法之介紹…………………………35 2-7-2 回應曲面法之原理…………………………36 2-7-3 中心混成設計(Central Composite Design) ………………………………………………39 第三章 實驗方法與材料 ………………………………41 3-1 實驗儀器與方法……………………………………41 3-1-1 常規儀器設備……………………………………41 3-1-2 Hydrogenase基因檢測之實驗儀器 ……………42 3-1-3 搖瓶產氫之實驗儀器……………………………42 3-1-4 醱酵槽醱酵產氫之實驗儀器……………………42 3-2 藥品試劑……………………………………………43 3-2-1 碳源 …………………………………………43 3-2-2 緩衝鹽類 ……………………………………43 3-2-3 無機嚴類 ……………………………………43 3-2-4 其他 …………………………………………44 3-2-4-1 SEM前處理之藥品 ……………………44 3-2-4-2 酚-硫酸法(Phenol-sulfuric acid method)之藥品 ………………………44 3-2-4-3 液態代謝物之標準品…………………44 3-2-4-4 DNA萃取之藥品……………………………44 . 3-2-4-5 PCR之藥品…………………………………45 3-2-4-6 DNA 電泳之藥品………………………45 3-3 菌種來源……………………………………………46 3-4 培養基配方…………………………………………46 3-5 分析儀器及方法……………………………………49 3-5-1 氣體組成分析 ………………………………49 3-5-2 液體組成分析 ………………………………51 3-5-3 菌量分析 ……………………………………53 3-5-4 總糖定量 ……………………………………53 3-5-5 掃瞄是電子顯微鏡觀察樣本製備 …………54 3-5-6 實驗數據分析 ………………………………55 3-6 實驗步驟方法………………………………………56 3-6-1 Hydrogenase基因檢測知實驗步驟…………56 3-6-1-1 Primer的製備…………………………56 3-6-1-2 DNA萃取方法 …………………………57 3-6-1-3 核酸濃度之定量………………………58 3-6-1-4 PCR實驗 ………………………………58 3-6-1-5 電泳實驗………………………………59 3-6-2 批次搖瓶產氫實驗(不同碳源測試)………59 3-6-2-1 碳源為葡萄糖之批次實驗……………59 3-6-2-2 碳源為果糖之批次實驗………………60 3-6-2-3 碳源為蔗糖之批次實驗………………61 3-6-3 C. butyricum CGS2之醱酵槽批次產氫實驗61 3-6-3-1 前培養…………………………………61 3-6-3-2 醱酵槽批次產氫操作…………………61 3-6-3-3 不同pH值控制之產氫實驗……………62 3-6-3-4 不同碳源濃度之產氫實驗……………64 3-6-4 RSM實驗設計…………………………………65 3-6-4-1 中心混成實驗…………………………65 3-6-4-2 RSM實驗操作 …………………………66 3-6-4-3 統計分析………………………………67 3-6-5 醱酵槽連續產氫實驗 ………………………68 3-6-5-1 控制不同pH值之連續產氫實驗………68 3-6-5-2 操作於不同HRT之連續產氫實驗 ……69 第四章 結果與討論 ……………………………………71 4-1 Hydrogenase 基因檢測……………………………71 4-1-1 DNA萃取結果…………………………………71 4-1-2以HG1 primer監測hydrogenase基因 ………72 4-2 批次產氫……………………………………………73 4-3 不同碳源對批次搖瓶產氫之影響…………………73 4-3-1 以葡萄糖為碳源之批次產氫 ………………75 4-3-1-1 葡萄糖濃度為5000 mg COD/l之產氫情 形………………………………………75 4-3-1-2 葡萄糖濃度為10000 mg COD/l之產氫情 形………………………………………75 4-3-1-3 葡萄糖濃度為20000 mg COD/l之產氫情 形………………………………………76 4-3-1-4 葡萄糖濃度為30000 mg COD/l之產氫情 形………………………………………76 4-3-2 以果糖為碳源之批次產氫………………………81 4-3-2-1 果糖濃度為5000 mg COD/l之產氫情形 …………………………………………81 4-3-2-2 果糖濃度為10000 mg COD/l之產氫情形 …………………………………………81 4-3-2-3 果糖濃度為20000 mg COD/l之產氫情形 …………………………………………81 4-3-2-4 果糖濃度為30000 mg COD/l之產氫情形 …82 4-3-3 以蔗糖為碳源之批次產氫………………………87 4-3-3-1 蔗糖濃度為5000 mg COD/l之產氫情形 …………………………………………87 4-3-3-2 蔗糖濃度為10000 mg COD/l之產氫情形 …………………………………………87 4-3-3-3 蔗糖濃度為20000 mg COD/l之產氫情形 …………………………………………87 4-3-3-4 蔗糖濃度為30000 mg COD/l之產氫情形 …88 4-3-4 綜合討論 ……………………………………93 4-4 醱酵槽批次產氫實驗………………………………97 4-4-1 pH值控制之產氫情形 ………………………97 4-4-2 不同蔗糖濃度之產氫情形 …………………99 4-4-3 綜合討論 ……………………………………99 4-5 RSM實驗設計………………………………………104 4-5-1中心混成實驗之產氫情形 …………………104 4-5-2 氫氣產率之最適化條件 ………………………130 4-5-3 產氫速率之最適化條件……………………130 4-5-4 RSM設計預測結果之驗證 …………………138 4-6 醱酵槽連續產氫實驗 ……………………………141 4-6-1 控制不同pH值之連續產氫實驗……………141 4-6-2 不同HRT之連續產氫實驗 …………………144 4-6-2-1 對照組之不同HRT連續產氫實驗……144 4-6-2-2 實驗組之不同HRT連續產氫實驗……147 4-6-3 連續產氫之動力學模擬……………………150 4-6-3-1 物質平衡 ……………………………150 4-6-3-2 穩態動力模式模擬 …………………153 4-6-3-3 綜合討論 ……………………………157 第五章 結論……………………………………………160 參考文獻 ………………………………………………164 附錄 ……………………………………………………173 附錄一 ………………………………………………173 附錄二 ………………………………………………174 附錄三 ………………………………………………177 自述 ……………………………………………………179 表目錄 表2-1 產氫微生物的種類………………………………10 表2-2 微生物產氫過程的優點和缺點…………………11 表2-3 細菌生長溫度範圍………………………………19 表2-4 各種細菌的營養型別……………………………25 表2-5 產生內孢子的細菌屬……………………………30 表2-6 部分梭孢桿菌屬的特徵…………………………32 表3-1 前培養基質及無機鹽成分………………………48 表3-2 厭氧醱酵配方……………………………………48 表3-3 碳源種類與濃度…………………………………49 表3-4 H2與CO2之檢量線 ………………………………50 表3-5各個代謝物之檢量線 ……………………………52 表3-6 各個碳源之檢量線………………………………53 表3-7 產氫酵素基因序列的Clostidium屬……………56 表3-8 RSM實驗設計法之設定參數 ……………………66 表4-1 菌種之萃取 DNA結果……………………………71 表4-2 C. butyricum CGS2於不同葡萄糖濃度下之產氫情形及modified Gompertz equation 模擬 ……………76 表4-3 C. butyricum CGS2於不同果糖濃度下之產氫情形及modified Gompertz equation 模擬 ………………82 表4-4 C. butyricum CGS2於不同蔗糖濃度下之產氫情形及modified Gompertz equation 模擬 ………………88 表4-5 各個碳源在不同濃度下,氫氣產率與產氫速率之 關係………………………………………………94 表4-6 各個碳源在不同濃度下之代謝產物……………96 表4-7 C. butyricum CGS2於不同pH值控制與不同蔗糖濃度條件下之產 氫醱酵效果……………………………102 表4-8 C. butyricum CGS2於不同pH值控制與不同蔗糖濃度下培養時之水溶性代謝物組成 ……………………103 表4-9 以RSM設計之各個試程下之產氫效能較………128 表4-10 以RSM設計之各個試程下代謝產物之比較 …129 表4-11 RSM實驗設計之氫氣產率與產氫速率 ………131 表4-12 RSM最佳條件之產氫效能預估值與實際值之比較 …………………………………………………138 表4-13 連續產氫醱酵對照組各個HRT下之產氫效能 146 表4-14 連續產氫醱酵對照組各個HRT下之溶解態代謝物 …………………………………………………146 表4-15 實驗組之各個HRT下產氫效能 ………………149 表4-16 實驗組之各個HRT下溶解態代謝產物 ………149 表4-17 各個 和 所求得之 和 ………………………156 表4-18在不同稀釋速率下各試程之產氫效能 ………159 表4-19不同稀釋速率下各試程之液態代謝產物比 …159 表5-1 本研究成果與文獻之比較 ……………………163 圖目錄 圖2-1 生質產氫樹狀圖 …………………………………9 圖2-2 光合作用產氫之代謝途徑圖……………………13 圖2-3 Cyanobacteria中固氮酵素催化產氫和催化後產氫酵素之氫氣攝取反應途徑圖……………………………15 圖2-4 傳統厭氧消化流程圖……………………………17 圖2-5 厭氧氫氣醱酵代謝途徑簡圖……………………18 圖2-6 相同消化程度下消化溫度與消化時間之關係…21 圖2-7 pH值的範圍………………………………………22 圖2-8四種細菌在深層瓊脂培養管中之生長分佈情形 24 圖2-9細胞內孢子之形成 ………………………………27 圖2-10不同內孢子著生位置的各種梭孢桿菌(Clostridium)的相差顯微鏡 …………………………30 圖2-11 梭孢桿菌丁酸群形成醱酵產生的途徑 ………33 圖2-12 從丙酮酸產生氫分子的情形 …………………34 圖2-13 實施RSM實驗設計的步驟流程圖………………38 圖2-14 中心混成實驗設計圖 …………………………40 圖3-1 Clostridium butyricum CGS2之SEM圖 ………46 圖3-2 親緣性分析樹狀圖………………………………47 圖3-3 操作條件:pH 5.5、35℃、20000 mg COD/l…55 圖3-4 批次搖瓶產氫系統裝置圖………………………60 圖3-5 批次產氫系統裝置圖……………………………63 圖3-6 連續產氫系統裝置圖……………………………70 圖4-1 DNA電泳結果圖 …………………………………72 圖4-2 C. butyricum CGS2以蔗糖濃度為20000 mg COD/l為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖………………………………………74 圖4-3 C. butyricum CGS2以5000 mg COD/l葡萄糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖……………………………………………77 圖4-4 C. butyricum CGS2以10000 mg COD/l葡萄糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖……………………………………………78 圖4-5 C. butyricum CGS2以20000 mg COD/l葡萄糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖……………………………………………79 圖4-6 C. butyricum CGS2以30000 mg COD/l葡萄糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖……………………………………………80 圖4-7 C. butyricum CGS2以5000 mg COD/l果糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖………………………………………………83 圖4-8 C. butyricum CGS2以10000 mg COD/l果糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖………………………………………………84 圖4-9 C. butyricum CGS2以20000 mg COD/l果糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖………………………………………………85 圖4-10 C. butyricum CGS2以30000 mg COD/l果糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖……………………………………………86 圖4-11 C. butyricum CGS2以5000 mg COD/l蔗糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖………………………………………………89 圖4-12 C. butyricum CGS2以10000 mg COD/l蔗糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖……………………………………………90 圖4-13 C. butyricum CGS2以20000 mg COD/l蔗糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖……………………………………………91 圖4-14 C. butyricum CGS2以30000 mg COD/l蔗糖為碳源批次培養之生長速率、氫氣濃度、溶解態代謝物組成及pH值關係圖……………………………………………92 圖4-15 各個碳源在不同濃度下之氫氣產率關係圖 …95 圖4-16 各個碳源在不同濃度下之產氫速率關係圖 …95 圖4-17 在碳源濃度為20000 mg COD/l時C.butyricum CGS2於各pH值之生長曲線及累積產氫量之關係………98 圖4-18 在pH值控在5.5時C. butyricum CGS2於不同碳源濃度之生長速率及累積產氫量之關係 ………………101 圖4-19 中心混成實驗Run No.1之實驗結果。操作條件:pH=4.5、30℃、sucrose concentration:10000 mg COD/l……………………………………………………108 圖4-20中心混成實驗Run No.2之實驗結果。操作條件:pH=4.5、30℃、sucrose concentration:30000 mg COD/l……………………………………………………109 圖4-21中心混成實驗Run No.3之實驗結果。操作條件:pH=4.5、40℃、sucrose concentration:10000 mg COD/l……………………………………………………110 圖4-22中心混成實驗Run No.4之實驗結果。操作條件:pH=4.5、40℃、sucrose concentration:30000 mg COD/l……………………………………………………111 圖4-23中心混成實驗Run No.5之實驗結果。操作條件:pH=6.5、30℃、sucrose concentration:10000 mg COD/l……………………………………………………112 圖4-24中心混成實驗Run No..6之實驗結果。操作條件:pH=6.5、30℃、sucrose concentration:30000 mg COD/l……………………………………………………113 圖4-25中心混成實驗Run No.7之實驗結果。操作條件:pH=6.5、40℃、sucrose concentration:10000 mg COD/l……………………………………………………114 圖4-26中心混成實驗Run No.8之實驗結果。操作條件:pH=6.5、40℃、sucrose concentration:30000 mg COD/l……………………………………………………115 圖4-27中心混成實驗Run No.9之實驗結果。操作條件:pH=3.82、35℃、sucrose concentration:20000 mg COD/l……………………………………………………116 圖4-28中心混成實驗Run No.10之實驗結果。操作條件:pH=7.18、35℃、sucrose concentration:20000 mg COD/l……………………………………………………117 圖4-29中心混成實驗Run No.11之實驗結果。操作條件:pH=5.5、26.6℃、sucrose concentration:20000 mg COD/l……………………………………………………118 圖4-30中心混成實驗Run No.12之實驗結果。操作條件:pH=5.5、43.4℃、sucrose concentration:20000 mg COD/l……………………………………………………119 圖4-31中心混成實驗Run No.13之實驗結果。操作條件:pH=5.5、35℃、sucrose concentration:3182 mg COD/l……………………………………………………120 圖4-32中心混成實驗Run No.14之實驗結果。操作條件:pH=5.5、35℃、sucrose concentration:36818 mg COD/l……………………………………………………121 圖4-33中心混成實驗Run No.15之實驗結果。操作條件:pH=5.5、35℃、sucrose concentration:20000 mg COD/l……………………………………………………122 圖4-34中心混成實驗Run No.16之實驗結果。操作條件:pH=5.5、350℃、sucrose concentration:20000 mg COD/l……………………………………………………123 圖4-35中心混成實驗Run No.17之實驗結果。操作條件:pH=5.5、35℃、sucrose concentration:20000 mg COD/l……………………………………………………124 圖4-36中心混成實驗Run No.18之實驗結果。操作條件:pH=5.5、35℃、sucrose concentration:20000 mg COD/l……………………………………………………125 圖4-37中心混成實驗Run No.19之實驗結果。操作條件:pH=5.5、35℃、sucrose concentration:20000 mg COD/l……………………………………………………126 圖4-38中心混成實驗Run No.20之實驗結果。操作條件:pH=5.5、35℃、sucrose concentration:20000 mg COD/l……………………………………………………127 圖4-39 pH與溫度相對於氫氣產率之回應曲面圖與等高線 圖………………………………………………132 圖4-40 pH與蔗糖濃度相對於氫氣產率之回應曲面圖與等 高線圖…………………………………………133 圖4-41 溫度蔗糖濃度相對於氫氣產率之回應曲面圖與等 高線圖…………………………………………134 圖4-42 pH與溫度相對於產氫速率之回應曲面圖與等高線 圖………………………………………………135 圖4-43 pH與蔗糖濃度相對於產氫速率之回應曲面圖與等 高線圖…………………………………………136 圖4-44溫度與蔗糖濃度相對於產氫速率之回應曲面圖與 等高線圖………………………………………137 圖4-45 RSM最佳培養條件之氫氣產率產氫情形 ……139 圖4-46 RSM最佳培養條件之產氫速率產氫情形 ……140 圖4-47連續醱酵產氫系統之不同pH控制實驗 ………142 圖4-48 不同pH值與氫氣產率之關係圖………………143 圖4-49不同pH值與產氫速率之關係圖 ………………143 圖4-50 對照組之不同HRT連續產氫實驗 ……………145 圖4-51 實驗組之不同HRT連續產氫實驗 ……………148 圖4-52 在穩定狀態下,稀釋速率D對蔗糖濃度S之影響 …………………………………………………153 圖4-53 在穩定狀態下,稀釋速率D對細胞濃度X之影響 …………………………………………………154 圖4-54 在穩態操作下,稀釋速率D對 (H2、CO2)之影響 …………………………………………………155 圖4-55 在穩態操作下,稀釋速率D對 (EtOH、HPr、HVa)之影響……………………………………………………155 圖4-56 在穩態操作下,稀釋速率D對 (HAc、HBu、TVFA、SMP)之影響………………………………………156 圖4-57 不同稀釋速率下各試程之產氫效能 …………158 附錄 圖1 氣相代謝產物H2之檢量線…………………………173 圖2 氣相代謝產物CO2之檢量線 ………………………173 圖3 液相代謝產物EtOH之檢量線………………………174 圖4 液相代謝產物HAc之檢量線 ………………………174 圖5 液相代謝產物HPr之檢量線 ………………………175 圖6 液相代謝產物HBu之檢量線 ………………………175 圖7 液相代謝產物HVa之檢量線 ………………………176 圖8 以Glucose為碳源時之檢量線 ……………………177 圖9 以Fructose為碳源時之檢量線……………………177 圖10 以Sucrose為碳源時之檢量線……………………178

    Ausubel F. M., Short protocols in molecular biology., Greene Pub. Associates and Wiley-Interscience p.1-20~1-21 ,1992

    Bailey J. E., Ollis D. F., Biochemical engineering fundamentals, 2nd edn., McGraw-Hill, New York, 1986

    Benemann J. R., Feasibility analysis of photobiological hydrogen production, Int. J. Hydrog. Energy, 22, 979-987,1997

    Benemann J. R., Miyamoto K., and Hallenbeck P. C., Bioengineering aspects of biophotolysis. Enzyme Microbial. Technol. 2, 103-11, 1980

    Benemann J. R., Berenson J. A., Kaplan N. O., and Kauren M. D., Hydrogen evolution by a chloroplast-fereedoxin-hydrogenase system. Proc. Natl. Acad. Sci. USA. 70, 23, 17-20, 1973

    Box G. E. P., and Wilson K. B., On the experimental attainment optimum conditions. J. Roy. Statist. Soc. B13:1-45, 1951

    Box G. E. P., Hunter W., and Hunter J. S., Statistics for experimenters. John WILEY and Sons, Inc., New York., 1978

    Brosseau J. D., and Zajic J. E., Continuous microbial production of hydrogen gas. Int. J. Hydrogen Energy. 7, 623-8, 1982

    Burns L. D., McCormick J. B., and Borroni-Bird C. E., Vehicle of change, Scientific American, New York, Oct 2002, 287, 4, 41-49, 2002

    Calvin M., and Taylor S.E., Fuels from algae. In: Cresswell RC, Rees TAV, Shah N, editors. Algal and cyanobacterial biotechnology. London: Longman Scientific and Technical. p. 137-160, 1989

    Chen C. C., Lin C. Y., and Chang J. S., Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate, Appl. Microbiol Biotechnol., 57, 56-64, 2001

    Chen. W. M., Tseng Z. J., Lee K. S., and Chang J. S., Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy, 30, 1063-1070, 2005

    Chin H. L., Chen Z. S., and Chou C. P., Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production, Biotechnol Prog, 19, 383-388, 2003

    Current protocols in molecular biology, Appendix 3D.1~3D.3, J. Wiley and Sons, 1992

    Das D., and Veziroglu T. N., Hydrogen production by biological processes: a survey of literature, Int. J. Hydrog. Energy, 26, 13-28, 2001

    Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., and Smith F., colorimetric Method for Determination of Sugars and Related Substances. Anal Chem., 28, 350-356, 1956

    Endo G., Noike T., and Matsumoto J., Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic disgestion, Proc. Soc. Civ. Engrs., No. 325, pp. 61-68, Japanese, 1982

    Fan Y., Li C., Lay J. J., Hou H. W., and Zhang G. S., Optimization of initial substrate and pH levels for germination of sporing hydrogen-producting anaerobes in cow dung compost. Bioresource Technol., 91, 189, 2004

    Fang H. H. P., and Liu H., Effect of pH on hydrogen production from glucose by a mixed culture, Bioresour. Technol., 82(1), 87-93, 2002

    Gaffron H, and Rubin J., Fermentative and photochemical production of hydrogen by algae. J. Gen. Physiol. 26, 219-40, 1992

    Hawkes F. R., Dinsdalea R., Hawkesb D. L., and Hussyb I., Sustainable fermentative hydrogen production: challenges for process optimization,
    Int. J. Hydrog. Energy, 27, 1339–1347, 2002

    Healey F. P., Hydrogen evolution by several algae. Planta. 91, 220, 1970

    Hemant J., Purohit A. K., Aditi A. M., and Gurpreet N., A novel approach for extraction of PCR-compatible DNA from activated sludge samples collected from different biological effluent treatment plants, J. Microbiol. Methods, 52, 315–323, 2003

    Himmelblau D. M., Process analysis by statistical methods. John Wiley and sons, Inc., New York, pp.230-292, 1970

    Kataoka N., Miya A., and Kiriyama K., Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria, Wat. Sci. Tech., 36, 41-47, 1997

    Khuri A. I., and J. A. C. Cornell, Response Surfaces:Designs and Analysis. John Wiley and Sons, New York.

    Kumar N., and Das D.,Continuous hydrogen production by immobilized Enterobacter cloacae ⅡT-BT 08 using lignocellulosic materials as solid matrices. Enzyme and Micro. Technol. 29, 280-287, 2001

    Kumar N., and Das D., Production of pollution free gaseous fuel. Patent application #473/2000/Cal. India, 2000

    Kumar N., Monga P. S., Biswas A. K., and Das D., “Modeling and simulation of cleaner fuel production.” Int. J. Hyd. Energy. 25, 945-52, 2000

    Kumar N., and Das D., Production and purification of alpha-amylase from hydrogen producing Enterobacter cloacae ⅡT-BT 08. Bioprocess Eng. 23, 205-8, 2000

    Kumar N., and Das D., Enhancement of hydrogen production by Enterobacter cloacae ⅡT-BT 08. Process Biochem. 35, 589-94, 1999

    Kumar D., and Kumar H. D., Effect of monochromatic lights on nitrogen fixation and hydrogen evolution in the isolated hetrocysts of Anabaena sp. strain CA. Int. J. Hydrogen Energy. 16, 397-401, 1991

    Kumazawa S., and Mitsui A., Characterization and optimization of hydrogen photoproduction by saltwater blue-green algae, Oscillatoria Sp. Miami BG7: Enhancement through limiting the supply of nitrogen nutrient. Int. J. Hydrogen Energy. 6, 339-48, 1981

    Lay J. J., Lee Y. J., and Noike T., Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Wat. Res. Ⅱ, 33, 2579-2586, 1999

    Lambert G. R., and Smith G.D., The hydrogen metabolism of cyanobacteria (blue-green algae). Biol. Rev. 56, 589-660, 1981

    Lee J. W., and Greenbaum E., A new perspective on hydrogen production of photosynthetic water splitting. In: Saha BC, Woodward J, editors. Fuels and chemical for biomass, ACS Symposium Series, Washington: ACS. Vol. 666, 209-22, 1997

    Lin C. Y., and Chang R. C., Hydrogen production during the anaerobic acidogenic conversion of glucose, J. Chem. Technol. Biotechnol., 74, 498-500, 1999

    Morntgomery D. C., Design and analysis of experiments. John Wiley and Sons, Inc., New York., 1984

    Miyake J., Zaborsky (eds), Plenum P., Biohydrogen., New York, 1998

    Mizuno O., Dinsdale R., Hawkes F. R., Hawkes D. L., and Noike T., Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresour. Technol., 73, 59-65, 2000

    Newsweek, April 8-15, 2002

    Rachman M. A., Furutani Y., Nakashimada Y., Kakizono T., and Nishio N., Enhanced Hydrogen Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter aerogenes, J. Fermen. Bioeng., 83(4), 358-363, 1997

    Ramachandran R., Menon R. K., An overview of industrial uses of hydrogen, Int. J. Hydrog. Energy, 23, 593-598, 1998

    Rosen M. A., and Scott D. S., Comparative efficiency assessments for a range of hydrogen production processes, Int. J. Hydrog. Energy, 23, 653-659, 1998

    Rachman M. A., Nakashimada Y., Kakizono T., and Nishio N., Hydrogen production with high evolution rate by self-flocculate cells of Enterbacter aerogenes in a packed-bed reactor. Appl. Microbiol., 49, 450-454 , 1998

    Rachman M. A., Furutani Y., Kakizono T., and Nishio N., Enchanced hydrogen production in altered mixed acid fermentation of glucose by Enterbacter aerogenes J.Ferment.Bioeng., 83, 358-363, 1997

    Sarker S., Pandey K. D., and Kashyap A. K., Hydrogen photoproduction by filamentous non-heterocystous cyanobacterium Pleatonema boryanna and simultaneous release of ammonia. Int. J. Hydrogen Energy. 17, 689-94, 1992

    Shuler M. L., Kargi F., Bioprocess engineering, Prentice-Hall, Englewood Cliffs,NJ

    Stewar W. D. P., “Some aspects of structure and function in N2-fixing cyanobacteria.” Annu. Rev. Microbiol. 34, 497-536, 1980

    Subramanian G., Kaushik B. D., and Venkatraman G. S., Cyanobacterial biotechnology. USA: Science Pub. Inc, 1998

    Tanisho S., Biological hydrogen production by fermentation., Proceedings of the Second International Conference on New Energy Systems & Conv., Istanbul. p. 311-6, 1995

    Tanisho S., Wakao N., and Kokako Y., Biological hydrogen production by Enterobacter aerogenes. J. Chem. Eng. Jpn. 16, 529-30, 1983

    Tanisho S., Suzuki Y., and Wakoo N., Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005. Int. J. Hydrogen Energy. 12, 623-7, 1987

    Tasi Y. L., and Olson B.H., Rapid method for direct extraction of DNA from soil and sediments, Appl. Environ. Microbiol. 1070-1074, 1991

    Thomas D., Michael T., John M., and Jack P., Biology of Microorganisms, Seventh edition, 77-80 ,1994

    Ueno Y., Kawai T., Sato S., Otsuka S., and Morimoto M., Biological production of hydrogen from cellulose by natural anaerobic microflora, J. Fermen Bioeng, 79, 395-397, 1995

    Van Ginkel S., Sung S., and Lay J. J., Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol., 35, 4726-4730, 2001

    Van Lier J. B., Rebac S., and Lettinga G., High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions, Water Sci. Technol., 35(10), 199-206, 1997

    Van Niel E. W. J., and Budde M. A. W., de Haas G. G., van der Wal F. J., Claassen P. A. M., and Stams A. J. M., Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii, Int. J. Hydrog. Energy, 27, 1391-1398, 2002

    Vavilin V. A., Rytow S. V., and Lokshina L. Y., Modelling hydrogen partial pressure change as a result of competition between the butyricand propionicgroups of acidogenicbac teria. Bioresour Technol, 54, 171–177, 1995

    Veziroglu T. N., Twenty years of the hydrogen movement 1974-1994, Int. J. Hydrog. Energy, 20, 1-7, 1995

    Yokoi H., Aratake T., Hirose J., Hayashi S., and akasaki,Y., Simultaneous production of hydrogen and bioflocculant by Enterobacter sp. BY-29, World J Microbiol Biotechnol 17(6), 609-13 , 2001

    Yokoi H., Tokushige T., Hirose J., Hayashi S., and Takasaki Y., H2 production from starch by a mixed culture of Clostridium butyricum and Entobacter aerogenes. Biotecbnology Letters, 20, 143-147, 1998

    Yokoi H., Ohkawara T., Hirose J., Hayashi S., and Takasaki Y., Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J. Fermen Bioeng 80(6), 571-574 , 1995

    Yokoi H., Mori M., Hirose J., Hayashi S., and Takasaki Y., H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett., 20, 895-899, 1998

    Yu H. Q., Fang H. H. P., and Gu G. W., Comparative performance of mesophilic and thermophilic acidogenic upflow reactors, Process Biochem., 38(3), 447-454, 2002a

    Yu H. Q., Zhu Z. H., Hu W. R., and Zhang H. H., Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures, Int. J. Hydrog. Energy, 27, 1359-1365, 2002b

    Weare N. M., and Benemann J.R., Nitrogenase activity and photosynthesis by Plectonema boryanum 594. J. Bacteriol. 119, 158-68, 1874

    Zaborsky O. R. (ed.) Biohydrogn. Plenum Press, New York, 1997

    Zhang T., Liu H., Fang H. H. P., Biohydrogen production from starch in wastewater under thermophilic condition, J. Environ. Manage., 69, 149-156, 2003

    王美雲、張嘉修,以Hydrogenase基因設計生物產氫菌功能性基因之核酸探針,第10屆生化工程研討會論文集,2005

    王貴譽、張瑞烽,微生物學第五版,第24-29頁,1993

    吳龍暉,用之不竭的乾淨氫氣能源,太陽能學刊,第4卷,第1期,第14-16頁,1999

    李國興、林屏杰、張嘉修,以生物膜反應器進行連續氫氣醱酵,第7屆生化工程研討會論文集,2002a

    李國興、陳惠莉、吳季芳、羅泳中、羅泳勝、張益盛、林屏杰、張嘉修,溫度對顆粒污泥程序醱酵產氫之影響,第28屆廢水處理技術研討會論文集, 2003

    李國鏞、游若荻,微生物學,華香原出版社,第四版,第126-145頁, 1992

    林秋裕、林明正,CSTR厭氧產氫反應槽之啟動及操作,逢甲大學土木與水利工程研究所碩士論文,2000

    林凱隆,重金屬對厭氧消化法酸生成相之影響,逢甲大學土木與水利工程研究所碩士論文,1991

    林祺能,固定化細胞產氫,逢甲大學化學工程系研究所碩士論文,2002

    邵信,厭氣處理研發新方向—產氫技術,1997廢水處理技術研討會第二章,工研院,1997
    洪哲穎、陳國誠,回應曲面實驗設計法在微生物酵素生產之應用,化工期刊,第39卷,第二期,第3-18頁,1992

    范姜楷,以CSTR合併中空纖維微過濾膜組進行厭氣污泥連續式產氫醱酵,逢甲大學化學工程系研究所碩士論文,2002

    范姜楷、林屏杰、張嘉修,以中空纖維膜生物反應器進行高效能厭氣產氫,第七屆生化工程研討會論文集,第543-549頁,2002

    張仕旻,利用薄膜反應器於高溫厭氧產氫生物程序之研究,成功大學環境工程學系研究所碩士論文,2001

    張嘉修、李國興、林屏杰、吳石乙、林秋裕,以環境生物技術生產清潔能源-氫氣,中國化學工程學會,第49卷第6期,第85-104頁,2002

    陳國誠,廢水生物處理學,國立編譯館出版,第8-10頁,1991

    曾重仁,氫能源技術簡介,太陽能學刊,第3卷,第2期,第9-11頁,1998

    詹哲豪、林绣茹、顏瑞鴻、池華瑋,簡明微生物學,第五版,第41-72頁,2000

    蔡水源,以生物技術生產氫氣—在CO2的分離、回收、在利用中研究出更潔淨的氫氣製造方法,電機月刊,第五卷,第十一期,第199-202頁,1995

    蔡孟倫、李國興、林屏杰、張嘉修,CSTR系統醱酵產氫之溫度效應探討,第9屆生化工程研討會論文集,2004

    賴俊吉,厭氧生物產氫技術發展近況,環境工程會刊,第24-29頁,2000

    謝哲松,微生物生物學下冊,國立編譯館出版,第1245-1252頁,1995

    下載圖示 校內:立即公開
    校外:2005-08-30公開
    QR CODE