簡易檢索 / 詳目顯示

研究生: 柯迷諾
Dewi, Laksmi
論文名稱: 以嗜熱菌產生之耐高溫蛋白為生物吸附劑進行水相中有價值金屬之回收
Recovery of Valuable Metals from Aqueous Systems Using Microbial Thermophilic Proteins as the Biosorbents
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 112
中文關鍵詞: 貴金屬生物吸附蛋白質嗜熱菌株
外文關鍵詞: Noble metal, biosorption, Gold, Platinum, Rhodium, Protein, Thermophilic strain
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來貴金屬(如金、鈀、鉑與銠)在目前全世界的需求與市場顯著增加,貴金屬本身具有特殊的物理與化學特性,導致貴金屬礦業製程處理需要昂貴技術,因此造就了貴金屬之高價位。目前在眾多回收貴金屬方法中,有一種低處理成本且高選擇性的方法,即利用微生物或是微生物產物-蛋白質進行貴金屬之吸附。文獻顯示一些蛋白質表面上所帶的官能基可提供特別的金屬鍵結中心(金屬鍵結位置)來進行金屬離子之螯合。本研究企圖利用自環境分離純化出的嗜熱菌株(Thermophilic strain) 所生產的蛋白質,開發生物吸附技術進行貴金屬(如金、鈀、鉑與銠)之回收。結果顯示,培養基以Modified Thermus Enhanced為最適合進行培養該嗜熱菌株生產金屬鍵結蛋白質,其最適化培養條件分別為溫度控制為55oC,攪拌速率控制為200 rpm,初始酸鹼值為7.0,最適合碳源為蔗糖,蔗糖濃度為0.5 g/L,尿素為最佳氮源,碳氮比為2.0為最佳組成。接著以該嗜熱菌株所生產蛋白質分別探討金、鈀、鉑與銠的吸附效能,結果顯示,鉑的最佳吸附條件的酸鹼值為2,吸附效能為231.6 mg/g protein;金的最佳吸附條件的酸鹼值為1,吸附效能為482.0 mg/g protein;鈀的最佳吸附條件的酸鹼值為3,吸附效能為395.5 mg/g protein;銠的最佳吸附條件的酸鹼值為3,吸附效能為712.7 mg/g protein。當吸附條件中藉由將溫度的提升,其對吸附效能也會有提升的效用。當吸附條件的溫度調升至100oC時,貴金屬吸附效能分別為252.2 mg Pt/mg protein、483.2 mg Au/mg protein、727.4 mg Pd/mg protein、386.0 mg Rh/mg protein。等溫吸附曲線於室溫下進行操作,貴金屬的飽和吸附曲線可以Freundlich等溫方程式描述。最後在脫附劑的測試中,以1.5 M的Thiourea結合1.0 N HCl可以有效地將貴金屬於生物蛋白上脫附,使貴金屬回收效能可達90%以上。

    The global demands and market prices of noble metals (e.g., Aurum (or gold), Platinum and Rhodium) have markedly increased. Because of special physical and chemical characteristics of noble metals, the process of noble metal mining requires employment of expensive technology, making the cost of mining process higher than received economic benefits. One of the ways to collect rare earth metal with low mining process cost and high selectivity is using microorganisms or their derived products (such as proteins) to directly adsorb the metals. Literature shows that some proteins possess functional groups that can provide specific metal binding sites (metal-binding domains), to chelate metal ions. In this study, noble metals, such as Aurum (or gold), Rhodium, and Platinum in aqueous system were recovered via biosorption using proteins produced from an isolated bacterial strain Thermophilic strain. Modified Thermus Enhanced Medium was found to be a suitable medium to improve the protein production of the thermophilic strain. The optimal conditions of protein production were temperature, 55oC; agitation rate, 200 rpm; initial pH, 7. Sucrose with a concentration of 0.5 g/L was selected as carbon source and urea as nitrogen source. A carbon to nitrogen ratio (C/N ratio) of 2 was considered as the best composition of carbon and nitrogen concentration to increase the protein production. Finally the microbial protein produced from thermophilic strain showed effective adsorption ability for Platinum (Pt), Aurum (Au), and Rhodium (Rh). The optimum adsorption condition for Pt occurred at pH 2 with an adsorption capacity of 231.6 mg/g protein. For Au, the optimum adsorption condition occurred at pH 1 with an adsorption capacity of 482.0 mg/g protein. For Pd metal, the optimum adsorption condition occurred at pH 3 with an adsorption capacity of 395.5 mg/g protein. For Rh metal, the adsorption optimum condition occurred at pH 3 with an adsorption capacity of 712.7 mg/g protein. The metal adsorption capacity increased with an increase in temperature. When the temperature was increased to 100oC, the metal adsorption capacity for Pt, Au, Pd, and Rh reached 252.2, 483.2, 727.4, and 386.0 mg/mg protein. The adsorption isotherm was conducted at room temperature. The adsorption of Pt, Au, Pd, and Rh could be well fitted by the Freundlich isotherm equation. Among the desorption agents examined, combination of 1.5 M Thiourea with 1 N HCl can effectively desorb the Pt, Au, Pd, and Rh metal ion from microbial protein with over 90% metal recovery.

    ACKNOWLEDGEMENTS I 中文摘要 II ABSTRACT III TABLE OF CONTENTS V LIST OF TABLES IX LIST OF FIGURES XI CHAPTER ONE INTRODUCTION 1 1.1 Research Background 1 1.2 Research Scheme 3 CHAPTER TWO LITERATURE REVIEW 5 2.1 Noble Metals 5 2.2 Sources of Noble Metals 6 2.3 Conventional methods for recovery of Noble Metals 8 2.4 Recovery Noble metal in Aqueous Systems 9 2.5 Biosorption 11 2.6 Microorganisms as biosorbent 14 2.7 Protein as Metal Biosorbents 17 2.8 Microbial Protein Production 18 2.9 Thermophilic Bacterium 24 2.10 Biosorption Mechanisms 24 2.11 Factors Affecting Biosorption 25 2.12 Biosorption Equilibrium Models 26 2.13 Adsorption Kineics 27 2.14 Regeneration of biosorbents 29 2.15 Protein Recovery 30 CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY 32 3.1 Chemicals and Materials 32 3.2 Equipment 34 3.3 Bacteria strain and cultivation medium 35 3.4 Analytical methods 36 3.4.1 Determination of protein concentration 36 3.4.2 Metal measurement using Inductively Coupled Plasma (ICP) 36 3.5 Experimental Methods 37 3.5.1 Protein production 37 3.5.1.1 Medium composition 37 3.5.1.2 Environmental Culture Optimization 41 3.5.1.3 Medium composition optimization 42 3.5.2 Protein concentration using ultrafiltration membrane 42 3.5.3 High Protein Recovery and quantitation measurement of metal in biosorption process 43 3.5.3.1 Comparison Membrane 3 kDa and Acetone precipitation in quantitation measurement of metal in biosorption process 43 3.5.3.2 Protein Recovery using Acetone Precipitation 45 3.5.4 Metal Adsorption condition 46 3.5.4.1 Metal adsorption at different initial pH-controlled 46 3.5.4.2 Metal adsorption at different temperature 48 3.5.4.3 Determination of adsorption isotherms 49 3.5.5. Selection of Desorption Agents 50 3.5.6 Repeated adsorption/desorption operations 51 CHAPTER FOUR RESULTS AND DISCUSSION 52 4.1 Microbial Protein Production from Thermophilic strain 52 4.1.1 Effect of medium composition on the growth and protein yield of Thermophilic strain 52 4.1.2 Effect of Environmental condition (temperature, pH and Agitation rate) on cell growth and protein yield of Thermophilic strain 55 4.1.2.1 Temperature optimization for cell growth and protein production of Thermophilic strain 55 4.1.2.2 Effect of agitation rate on cell growth and protein production of Thermophilic strain 58 4.1.2.3 Initial pH optimization for cell growth and protein production of Thermophilic strain 60 4.1.3 Optimization of medium composition 62 4.1.3.1 Carbon sources optimization for cell growth and protein production of Thermophilic strain 62 4.1.3.2 Effect of carbon source (sucrose) concentration on cell growth and protein production of Thermophilic strain 65 4.2 Quantification of metal biosorption performance by using different protein recovery methods 74 4.3 Acetone Protein Precipitation 78 4.4 Metal Biosorption by Protein Produced by Thermophilic strain 79 4.4.1 Effect of initial pH on metal biosorption with proteins produced by Thermophilic strain 79 4.4.2 Effect of Temperature on metal binding microbial protein 84 4.4.3. Adsorption Isotherms 88 4.4.4. Adsorption Kinetics 91 4.4.5 Comparison of metal biosorption capacity of proteins from Thermophilic strain for Pt, Au, Pd, and Rh with other biosorbents reported in the literature 92 4.5 Desorption of metals from the loaded proteins 96 4.6 Repeated adsorption/desorption procedures 98 CHAPTER FIVE CONCLUSION AND SUGGESTIONS 99 5.1 Conclusions 99 5.2 Suggestions 100 REFERENCES 101

    1. Ahalya N, Ramachandra TV, Kanamadi RD. 2003. Biosorption of heavy metals. Res J Chem Environ;7:71-78.
    2. Aksu, Z. 2005 Application of biosorption for the removal of organic pollutants: A review. Proc. Biochem. 40, 997-1026.
    3. Albuquerque, L., Tiago, I., Verissimo, A., da Costa, M. S. 2006. Tepidimonas thermarum sp. nov., a new slightly thermophilic betaproteobacterium isolated from the Elisenquelle in Aachen and emended description of the genus Tepidimonas. Syst.Appl.Microbiol. 29 : 450-456
    4. Anson, F. C. and Lingane, J. T., J. Amer. 1957. The Noble Metal. Chem. Soc., 79, 4 901
    5. Arima Harunobu, Fujita Toyohisa, Yen, Wan Tai .2001. Gold Recovery from Nickel Catalyzed Ammonium Thiosulfate Solution by Strongly Basic Anion Exchange Resin. Material Transactions: vol 43, No. 3 pp 485 to 493
    6. Arrascue, M.L., Garcia, H.M., Horna, O., Guibal, E.. .2003.Gold Sorption on Chitosan Derivatives, In: Hydrometallury 71. p. 191
    7. Becker, E. W., and L. V. Venkataraman. 1978. A Manual on the Cultivation and Processing of Algae as a Source of Single-Cell Protein. Central Food Technological Re- search Institute, Mysore, India
    8. Beveridge, T. J.; Koval, S. F. 1981. Binding of metals to cell envelopes of Escherichia-Coli-K-12. Appl. Environ. Microbiol.,42, 325-335.BioMetals 11, 145–151.
    9. Bitton, Gabriel. 2002.Encyclopedia of Environmental Microbiology.Wiley-Interscience; Volume 3 edition
    10. Bond, GC, Thomson AT. 1999. Catalyst by gold, catal.Rev. Sci. Eng.Lelay G. Physics and electronics of the noble-metal elemental semiconductor interface formation. Catal Rev Sci Eng 41:319
    11. Bottom Ash. Water, Air, & Soil Pollution: Focus 9, pp. 107-116.Mustonen R, Hemminki K, Alhonen A, Hietanen P, Kiilunen M .1988. Determination of cisplatin in blood compartments of cancer patients. IARC Sci Publ 89 : 329
    12. Bradford, M.M.. 1976, "Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding", Anal. Biochem. 72: 248–254
    13. Brock TD, Freeze H. 1969. Thermus aquaticus gen. n. and sp.n., a nonsporulating extreme thermopjile. J Bacteriol. 98(1): 289-97
    14. Brock, T. D., & Boylen K. L. 1973. Presence of Thermophilic Bacteria in Laundry and Domestic Hot-Water Heaters. Applied Microbiology. 25, 72-76.
    15. Brown, K. L., 1986, Gold deposition from geothermal discharges in New Zealand: Economic Geology, v. 81: 979-983.
    16. Brown, K.L., Simmons, S.F., 2003. Precious metals in high temperature geothermal systems. Geothermics 32, 619–626.
    17. Chang JS, Chen CC. 1999.Biosorption of lead, copper, and cadmium with continuous hollow-fiber microfiltration processes. Separation Science and Technology;34(8):1607-27.
    18. Chang JS, Hong J. 1994.Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64). Biotechnology and Bioengineering,;44:999-1006.
    19. Chen, S.L., and D.B. Wilson. 1998. Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg2+-contaminated environments. Appl. Environ. Microbiol : 63, 2442-2445, 1998
    20. Cordery, J., Will, A.J., Atkinson, K., Wills, B.A., 1994. Extraction and recovery of silver from low grade liquirs using microalgae. Minerals Engineering 7 (8), 1003–1015.
    21. Cornelis, P., 2000.Expressing gene in different Escherichia coli compartment, Curr. Opin.Biotechnol. 11, 450-454,
    22. Cote, R. (ed.) 1992. American Type Culture Collection Catalogue of Bacteria and Phages. Rockville, MD, pp. 431.
    23. Craig, J P, Garret A, G, Williams, H, B. 1953. The Ovalbumin-Chloroauric acid reaction. Louisana State Univeristy.
    24. Craig, J. P.; Garrett, Jr. A. G.; Williams, H. B. 1954.The ovalbumin chloroauric acid reaction. J. Am. Chem. Soc., 76, 1570-1575.
    25. Crowell, Andrew M,J, Wall, Mark K, Doucette Alan A. 2013. Maximizing recovery of water-soluble proteins through acetone Precipitation. Analytical Chimica Acta 796 : 48-54
    26. Darnall, D.W., Greene, B., Henzl, M.T., et al., 1986. Selective recovery of gold and other metal ions from an algal biomass. Environmental Science and Technology 20 (2), 206–208.
    27. Das N, Vimala R, Karthika P. Biosorption of heavy metals-An overview. 2008. Indian Journal of Biotechnology;7:159-69.
    28. de Vargas, I., L. E. Macaskie, and E. Guibal. 2004. Biosorption of palladium and platinum by sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 79:49-56.
    29. Deng S, Ting YP. 2005. Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res ;39:2167–77.
    30. Dhankhar, R., Hooda, A., 2011. Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 32(5), 467–491
    31. Doker, S. Malcı, M. Dogan, B. Salih, 2005.New poly(N-(hydroxymethyl) methacrylamide-1-allyl-2-thiourea) hydrogels prepared by radiationinduced polymerization: selective adsorption, recovery and preconcentration of Pt (II) and Pd (II), Anal. Chim. Acta 553 73–82.
    32. Durand-Chastel, H., and G. Clement. 1975. Spiralina algae. Food for tomorrow. Pages 85-90 in Proc. 9th Int. Cong. Nutrition, Vol. 3. S. Karger, Basel, Switzerlandelectrophoresis, J. Chromatogr. B. 781, 303-311,
    33. Enebo, L. 1969. Growth of algae for protein. State of the art. Chem. Eng. Prog. Symp.Sec. 65(93): 60 -65.
    34. Ewellina, Fic, Krok, Sylwia Kedracka, Jankowska, Urszula, Pirog Atur, Wasylewska, Marta Dziedzicka. 2010. Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31, 3572-3579
    35. Farooq, U., Kozinski, J.A., Khan, M.A., Athar, M., 2010. Biosorption of heavymetalions using wheat based biosorbents – a review of the recent literature. Bioresour. Technol. 101, 5043–5053.
    36. Feng, YG; Yao, HW; Wang, JF. 2009. Solution structure and calcium binding of protein SSO6904 from the hyperthermophilic archaeon Sulfolobus solfataricus, Proteins-structure function and bioinformatics. 78, 474-479,.
    37. Figueira, M. M.; Volesky, B.; Ciminelli, V. S. T.; Roddick, F. A. 2000.Biosorption of metals in brown seaweed biomass. Water Res., 34, 196-204.
    38. Fiol, N., I. Villaescusa, M. Martínez, N. Miralles, J. Poch, J. 2006.Serarol, Sorption of Pb(II),Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste, Sep. Purif.Technol. 50, 132-140,
    39. Friis M, Keith M. Biosorption of uranium and lead by Streptococcus longwoodensis. 1998. Biotechnol Bioeng;35:320-25.
    40. Fujiwara K, Rames A, Maki T, Hasegawa H, Ueda K. 2007. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto L-lysine modified crosslinked chitosan resin. Jn Hazard Mater 146 (1-2): 39-50.
    41. Gamez, G, Dokken, I, Herrera J,G Parsons, Tiemann K J, Gardea-Torresdey, J L. 2007. Chemical Processes Involved Aurum (III) Binding and Bioreduction by Alfa Biomass Conferences on Hazardous Waste Research
    42. Ghassary, P, T. Vincent, J.S Marcano, L.E Macaskie, E.Guibal. 2005. Palladium and Platinum recovery from bicomponent mixtures using chitosan derivatives, hydrometallurgy 76 131-147
    43. Graham RA, Siddik ZH, Hohn DC .1990. Extracorporeal hemofiltration: a model for decreasing systemic drug exposure with intra-arterial chemotheraphy. Cancer Chemother Pharmacol 26 :210
    44. Grill, E., 1987. Phytochelatins, the heavy metal binding peptides of plants: characterization and sequence determination, Experientia Suppl. 52, 317-322.
    45. Guibal, E, Von Offenberg Sweenwy, N, Vincent T, Tobin J,M. 2002. Sulfur derivatives of chitosan for palladium sorption. Reactive and Functional Polymers (50): 149-163
    46. Guo B, Hong L, Jiang HX. 2003. Macroporous poly(calcium acrylate-divinylbenzene) bead a selective orthophosphate sorbent. Ind Eng Chem Res ;42: 5559–65.
    47. Gutnick, D.L. & Bach H. 2000. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl. Microb. Biotechnol. 54, 451-460.
    48. Hamdy AA. Biosorption of Heavy Metals by Marine Algae. 2000. Current Microbiology;41:232–38.
    49. Hang C, Hu B, Jiang Z, Zhang N. 2007. Simultaneous on-line preconcentration and determination of trace metals in environmental samples using a modified nanometer-sized alumina packed micro-column by flow injection combined with ICP-OES. Talanta : 06.033
    50. Hassanien Mohammed, Abou-El Sherbini Khaled S. 2005. Synthesis and characterisation of morin-functionalised silica gel for the enrichment of some precious metal ions. Talanta 68: 1550-1559
    51. Ho YS, Porter JF, McKay G. 2002. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut;141:1–33.
    52. Huang, C.C., C.C. Su, J.L. Hsieh, C.P. Tseng, P.L. Lin, J.S. Chang. 2003. Polypeptides for heavy-metal biosorption: capacity and specificity of two heterogeneous MerP proteins. Enzyme Microb. Technol. :33, 379-385.
    53. Huismann J., Magalini F., Kuehr R., Maurer C., Ogilvoe S., Poll J., Delgado C., Artim E., Szlezak J, Stevels A. 2007. Review of Directive 2002/96 on Waste Electrical and Electronic Equipment (WEEE), Final Report
    54. Ibrahim ,Hussein H, SF, Kandeel K, Moawad H. 2004. Biosorption of heavy metals from waste water using Pseudomonas sp. Electronic Journal of Biotechnology;7(1):40-47.
    55. Isab, A. A.; Sadler, P. J. 1997. Reactions of gold (III) ions with ribonuclease A and methionine derivatives in aqueous solution. Biochim. Biophys. Acta: 492, 322-330.
    56. Ishikawa S1, Suyama K, Arihara K, Itoh M. 2002. Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresources Technology. 81(3): 201-6.
    57. Kägi, J.H.R., 1991. Overview of metallothioneins, Methods Enzymol. 205, 613-626,
    58. Kagi, JH, Vasak, M, Lerch K, Gilg, D E, Hunziker, P, Bernhard, W, R, Good, M. 1984. Structure of Mammalian Metallothuinein. Environmental Health Perspect 54 : 93-103
    59. Kalal, Sid Hossein, Panahi, Ahmad Homayon, Hoveidi Hasan, Taghiof Mohammad. 2012. Synthesis and application of Amberlite xad-4 functionalized with alizarin red-s for preconcentration and adsorption of rhodium (III). Iranian Journal of Environmental Health Sciences & Engineering 9: 7
    60. Kaminskaia, N. V.; Kostic, N. M. 2001. New selectivity in peptide hydrolysis by metal complexes. platinum(II) complexes promote cleavage of peptides next to the tryptophan residue. Inorg. Chem.: 40, 2368-2377.
    61. Kentish, S. E.; Stevens, G. W. 2001. Innovations in separationstechnology for the recycling and re-use of liquid waste streams. Chem. Eng. J., 84, 149-159.
    62. Kido Y, Khokhar AR, Siddik ZH .1992. Pharmacokinetics of intravenously injected H tetrachloro (D, L- trans) 1,2-diammino-cyclohexabe platinum (IV) (tetraplatin) in mice. Drug Metan Dispos 20 : 673.
    63. Kratochvil, D., Volesky, B. 1998.Advances in the biosorption of heavy metals. Trends Biotechnol.,16, 291-300.
    64. Kumar JIN, Oommen C, Kumar RN. 2009. Biosorption of heavy metals from aqueous solution by green marine microalgae from Okha Port, Gulf of Kutch, India. American-Eurasian J Agric & Environ Sci ;6(3):317-23.
    65. Kuyucak, N., Volesky, B., 1988. Biosorbents for recovery of metals from industrial solutions. Biotechnology Letters 10 (2), 137–142.
    66. Lo, Yung Chung, Cheng, Chieh Lun, Han Yin Lung, Chen Bor Yann, Chang Jo Shu, Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation 2014. Bioresource Technology 160 : 182-190
    67. Ma, H, X.P. Liao, X. Liu, B. Shi. 2006. Recovery of platinum (IV) and palladium (II) by bayberry tannin immobilized collagen fiber membrane from water solution, J. Membr. Sci. 278 373–380.
    68. Ma, Jianguo, Gerit Stoter, Jaap Verweij, Jan H.M Schellens .1996. Comparison of ethanol plasma protein precipitation with plasma ultrafiltration and trichloroacetic acid protein precipitation for the measurement of unbound platinum concentration. Cencer Chemother Pharmacol 38 : 391-394
    69. Mack, Cherie-Lynn. 2005. Screening of technologies for the recovery of rhodium (III) metal ions from precious metal refinery waste water. South Africa: Rhodes University
    70. Maruyama, Tatsuo. Matsushita, Hironari, Shimada, Yukiko, Kamata, Ichiro Hanaki, Misa, Sonokawa, Saori, Kamiya, Noriho, Goto, Masahiro 2007. Proteins and Protein-Rich Biomass as Environmentally Friendly adsorbents selective for precious metal ions. Environ. Sci. Technol : 41, 1359-1364.
    71. McKay G, Al-Duri B. 1987. Simplified model for the equilibrium adsorption of dyes from mixtures using activated carbon. Chem Eng Process ;22:145–56.
    72. McKay G, Ho YS, Ng JCP. 1999. Biosorption of copper from waste waters: a review. Sep Purif Methods;28:87–125.
    73. Milovic, N. M.; Kostic, N. M. 2002. Palladium (II) complexes, as synthetic peptidases, regioselectively cleave the second peptide bond “upstream” from methionine and histidine side chains. J. Am. Chem. Soc.: 124, 4759-4769.
    74. Minami, T., S. Ichida, K. Kubo, 2002.Study of metallothionein using capillary zone. J. Chromatogr. B. 781, 303-311.
    75. Morf, L.S., Gloor, R., Haag, O., Haupt, M., Skutan, S., Lorenzo, F.D., Böni, D., 2013. Precious metals and rare earth elements in municipal solid waste – sources and fate in a Swiss incineration plant. Waste Manage. 33, 634–644.
    76. Muchová, L., Bakker, E. & Rem, P. 2009. Precious Metals in Municipal Solid Waste Incineration
    77. Naja, G., Murphy, V. and Volesky B .2009. Biosorption, metals. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. Ed: Flickinger, M. C. Wiley, pp. 4500.
    78. Ngah, W.S Wan, Liang, K.H. 1999. Adsorption of Gold(III) Ions onto Chitosan and N-Carboxymethyl Chitosan: Equilibrium Studies. Ind Eng Chem Res 38 : 1411-414
    79. Niu, H. and Volesky, B. 1999. Cvenkaacteristics of gold biosorption from cyanide solution. J.Chem. Technol.Biotechnol. 74, 778-784
    80. Niu, H., Volesky, B. and N. Gomes. 1999. Enhancement of gold-cyanide biosorption by L-cystein, 493-502.
    81. Nobre, Fernanda. Truper, Hans G, Da Costa, Milton. 1996. Transfer of Thermus ruber (Loginova et al. 1984), Themus Silvanus (Tenreiro et al. 1999, and Themus chliarophilus (Tenreiro et al.1995) to Meiothemzus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., Respectively, and Emendation of Genus Thermus. International Journal of Systematic Bacteriology p 604-606
    82. Nordberg, M., 1998.Metallothioneins: historical review and the state of knowledge, Talanta. 46,243-254,
    83. Ogata, T, Nakano, Y. 2005. Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. Water Research 39: 4281-4286
    84. Park YJ and Fray D .2009. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials 164(2–3): 1152–1158.
    85. Park, J. D., Y. Liu, C.D. Klaassen, 2001.Protective effect of metallothionein against the toxicity of cadmium and other metals, Toxicology. 163, 93-100,
    86. Pethkar A,V, Kulkarni SK, Paknikar K, M. 2001. Comparative studies on metal biosorption by two strains of Cladosporium cladosporioides. Bioresource Technol. 80 : 211-15
    87. Qiaosheng, Pu, Zhixing Su, Zhide Hu, Chang Xijun, Yan Ming. 1998. 2-Mercaptobenzothiazole-bonded silica gel as selective adsorbent for preconcentration of gold, platinum and palladium prior to their simultaneous inductively coupled plasma optical emission spectrometric determination. Journal of Analytical Atomic Specthometry.
    88. Qing, Yongchao, Hang Yiping, Wanjaul Ruth, Hu Bin. 2003. Adsorption Behaviour of Noble Metal Ions (Au, Ag, Pd) on Nanometer-size Titanium Dioxide with ICP-AES. Japan Society for Analytical Chemistry Vol 19.
    89. Qu, Rongjun, Wang Chunhua, Sun Changmei, Ji Chunnuan, Guoxia Cheng, Wang Xiaogin, Gang Xu. 2004. Syntheses and Adsorption Properties for Hg of Chelating Resin of Crosslinked Polystyrene-Supported 2,5-Dimercapto-1,3,4-thiodiazole. Journal of Applied Polymer Science. Volume 92 Issue 3.
    90. Ramesh, A,Hasegawa H, Sugimoto W, Maki T, Ueda K. 2007. Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresource Technology : 99(9) : 3801-9
    91. Reddad Z, Gerente C, Andres Y, Le Cloirec P. 2002. Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol ;36:2067–73.
    92. Rolison D.R. 2003. catalytic nanoarchitectures-The importance of nothing and the unimportance of periodicity. Science, 299 (5613), 1698-1701.
    93. Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA. 2007. Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology;98:3344–53.
    94. Romero MC, Reinoso EH, Urrutia MI, Kiernan AM. 2006. Biosorption of heavy metal by Talaromyces helices: a trained fungus for copper and biphenyl detoxification. Electronic Journal of Biotechnology ;9(3):221-26.
    95. Ruiz, M, A.M. Sastre, E. 2000. Palladium sorption on glutaraldehydecrosslinked chitosan, React. Funct. Polym. 45 155.
    96. Ruiz, Montserrat, Sastre Ana Maria, Zikan Maria Celia, Guibal, Eric. 2000. PalladiumSorption on Glutaraldehyde-Crosslinked Chitosan in Fixed-Bed Systems. Journal of Applied Polymer Science. Volume 81,Issue 1.
    97. Sağ Y, Kutsal T. 2000.Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem Eng J;6:145–51.
    98. Sánchez, A., Ballester, B., Blázquez, M.L., González, F., Muñoz, J. and Hammaini, A. 1999. Biosorption of copper and zinc by Cymodocea nodosa, FEMS Microbiology Reviews, 23 527-536.
    99. Savvaidis, 1998. Recovery of gold from thiourea solutions using microorganisms.heavy-metal biosorption: capacity and specificity of two heterogeneous MerP155 proteins, Enzyme Microb. Technol. 33, 379-385,
    100. Schecher W. D. 1999. MINEQL+: A Chemical Equilibrium Program for Personal Computers, Users Manual Version 2.22. Environmental Research Software, Inc., Hallowell, ME.
    101. Schmid G. 2003.Nanoprticle gold: Synthesises, structures, electronics, and reactivities, Eur. J. Inorg. Chem. European Journal of Inorganic Chemistry : Volume 2003, Issue 17, pages 3081–3098,
    102. Schneider, I. A. H.; Rubio, J. 1999.Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environ. Sci.Technol.,33, 2213-2217.
    103. Shuler, Michael L, and Kargi, Fikret. 2002. Bioprocess Engineering. Prentice Hall
    104. Siddik ZH, Newell DR, Boxall FE, Harrap KR .1987. The comparative pharmacokinetics of carboplatin and cisplatin in mice and rats. Biochem Pharmacol 36 : 1925
    105. Sowjanya, TN; Mohan, PM. 2009.A calcium binding protein from cell wall of Neurospora crassa. Journal of basic microbiology. 49, 371-376,.
    106. Tenreiro, S., M. F. Nobre, and M. S. da Costa. 1995. Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., two new species related to Thermus ruber but with lower growth temperatures. Int. J. Syst. Bacteriol. 45633-639.
    107. Torres E, Mata, Y N, Blazquez ML, Munoz J,A, Gonzalez F, Ballester A. 2005. Gold and Silver Uptake and Nanoprecipitation on Calcium Alginate Beads. Langmuir 21 : 7951-7958.
    108. Tossavainen H, Permi P, Annila A, Kilpelainen I, Drakenberg T. 2003. NMR solution structure of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. European journal of biochemistry. 270, 2505-2512,
    109. Uheida Abdussalam, Iglesias M, Fontas C, Hidalgo M, Salvado V, Zhang Y, Muhammed M. 2006. Sorption of palladium(II), rhodium(III), and platinum(IV) on Fe3O4 nanoparticles. Journal of Colloid and Interface Science 301 : 402-408.
    110. Valls, M., V. de Lorenzo, G.D. Roser, S. Atrian. 2002. Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal biosorption, J. Inorg. Biochem : 79, 219-223.
    111. Veglio, F., Beolchini, F.1997.Removal of metals by biosorption: a review. Hydrometallurgy: 44, 301-316.
    112. Vijayaraghavan K, Yun YS. 2007. Chemical modification and immobilization of Corynebacterium glutamicum for biosorption of Reactive black 5 from aqueous solution. Ind Eng Chem Res;46:608–17.
    113. Vijayaraghavan K, Yun YS. 2007a.Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution.J Hazard Mater;141:45–52.
    114. Volesky B, Holan ZR. 1995.Biosorption of heavy metal. Biotechnol Prog;11:235-50
    115. Walkiden, G W, 1962. Platinum in Anodes : Cathodic Protection Applications, Anti Corrosion methods and materials, Vol 9 Iss : 1, pp 14-16
    116. Wang J, Chen C. 2009. Biosorbents for heavy metals removal and their future. Biotechnology Advances;27:195–226.
    117. Wang, Ru, Xue-pin Liao, Shi-lin Zhao, Bi Shi. 2006. Adsorption of bismuth(III) by bayberry tannin immobilized on collagen fiber. Journal of Chemical Technology and Biotechnology. Volume 81 : 1301-1306
    118. Wasikiewickz, Jaroslaw M, Mitomo, Hiroshi, Seko, Noriaki, Tamada, Masao, Yoshii, Fumio. 2006. Platinum and Palladium Ions Adsorption at the Trace Amounts by Radiation Crosslinked Carboxymethylchitin and Carboxymethylchitosan Hydrogels. Journal of Applied Polymer Science. Volume 104. Issue 6.
    119. Weber WJ, Morris JC. 1963. Kinetics of adsorption on carbon solution. J Sanit Eng Div Am Soc Civ Eng ;89:31–59.
    120. Wilke A, Buchholz R, Bunke G. 2006. Selective biosorption of heavy metals by algae. Environmental Biotechnology;2(2):47-56.
    121. Won, Sung Wook, Kotte Pratap, Wei Wei, Lim Areum, Yeoung Sang Yun. 2014. sorbents for recovery of precious metals. Bioresource Technology : 160. 203-212
    122. Wu, W, Shen J, Banerjee P, Zhou S. 2010. Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials: 7555-66
    123. Yin P1, Xu M, Qu R, Chen H, Liu X, Zhang J, Xu Q. 2013. Uptake of gold (III) from waste gold solution onto biomass-based adsorbents organophosphonic acid functionalized spent buckwheat hulls. Bioresources Technology. 128 : 36-43.
    124. Zereini, Fathi, Alt, Frriedrich. 2006. Palladium Emissions in the Environment. Netherland,Springer.
    125. Zhang Hongli, Mengxiao Liu, Hua Cui, 2014."Fluorescence and fluorescence resonance energy transfer of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles", J.Photochem.Photobio.A, , 275, 1-6
    126. Zhang Xueyong, Ding Shimin, Wang Yuting, Feng Xiang Hua, Peng Qi, Ma Shulan, 2006. Synthesis and Adsorption Properties of Metal Ions of Novel Azacrown Ether Crosslinked Chitosan. Journal of Applied Polymer Science volume 100 Issue 4.
    127. Zhou, Limin, Xu Jianping, Liang Hen Xing, Liu Zhirong. 2010. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. Journal of Hazardous Materials 182: 518-524
    128. Zou, J.; Taylor, P.; Dornan, J.; Robinson, S. P.; Walkinshaw, M.D.; Sadler, P. J. 2000. First crystal structure of a medicinally relevant gold protein complex: Unexpected binding of [Au(PEt3)](+) to histidine. Angew. Chem., Int. Ed., 39, 2931-2934.
    129. National Collection of Industrial, Food and Marine Bacteria (NCIMB), Scotland
    homepage:http://www.ncimb.com/Files/NCIMB%20Culture%20Media%20v2.0.pdf
    130. Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures
    Homepage:http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium86.pdf

    無法下載圖示 校內:2024-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE