簡易檢索 / 詳目顯示

研究生: 王怡斌
Wang, Yi-Bin
論文名稱: 以本體論為基之分散式案例推理機制開發
Development of Mechanism for Ontology-Based Distributed Case-Based Reasoning
指導教授: 陳裕民
Chen, Yuh-Min
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造工程研究所
Institute of Manufacturing Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 本體論類神經網路案例式推理知識擷取
外文關鍵詞: Neural Network, Knowledge Retrieval, Case-Based Reasoning, Ontology
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在「知識經濟時代」與「分散式產業型態」中,企業知識資產的獲得已不再侷限於企業本身。為了支援分散式的產業環境,分散式案例推理勢必在跨企業的經驗與知識分享中扮演不可或缺的角色。目前在分散式案例推理的研究,多針對同一系統內之分散式案例作搜尋,且均依據事先設計之領域知識標準來實現知識分享,而系統間的知識分享卻未被重視。另外傳統的案例式推理系統,多僅提供使用者近似的案例,無法依使用者之需求進行調適。
    本研究主要目的在設計一分散式案例推理系統架構,並應用本體論工程技術來解決分散式案例異質與案例調適的問題,再利用本體論特性與多階段之演算法發展一「本體論為基之分散式案例推理機制」,使能依使用者之描述,從分散式歷史案例儲存庫中找尋到最近似之歷史案例,再經由領域本體論概念與概念之間的關聯與限制,導出案例調適的法則,再對案例進行調適,以協助使用者獲得適當之案例。

    Due to the advent of knowledge-based economy and distributed enterprises, the enterprises get the knowledge not only from themselves but also others. In order to support knowledge integration in the distributed enterprises, the distributed case-based reasoning systems(DCBRs) plays an important role in the knowledge and experience sharing. Up to the present, researches on DCBRs focus merely on retrieving cases in the same system and using a pre-defined standard of domain knowledge for knowledge sharing, but the needs of sharing knowledge among heterogeneous CBR systems have not been considered. In addition, traditional CBR systems only provide similar cases without performing case adaptation.
    The objective of the research is to develop a mechanism for ontology-based distributed case-based reasoning using characteristic of ontology and a proposed multistage algorithm. This thesis proposes a distributed CBR system architecture and uses ontology to solve the semantic mismatch problems between heterogeneous cases as well as the problems of case adaptation without involvement of domain experts. The results of this study will enable heterogeneous knowledge retrieval in distributed enterprises and thus facilitate knowledge sharing.

    摘 要.................................................................... I Abstract ............................................................... II 誌 謝...................................................................III 目 錄................................................................... IV 表 目 錄................................................................ VI 圖 目 錄................................................................VII 第一章、緒論..............................................................1 1.1、研究背景.............................................................1 1.2、研究動機.............................................................1 1.3、研究目的.............................................................2 1.4、問題分析.............................................................3 1.5、主要研究項目.........................................................4 1.6、研究步驟與方法.......................................................4 1.7、論文架構.............................................................8 第二章、相關文獻與技術探討................................................9 2.1、領域探討.............................................................9 2.1.1、傳統案例式推理.....................................................9 2.1.2、分散式作業模式....................................................16 2.1.3、本體論............................................................20 2.2、相關技術探討........................................................22 2.2.1、資訊擷取技術探討..................................................22 2.2.2、模糊理論探討......................................................24 2.2.3、類神經網路探討....................................................30 第三章、本體論為基之分散式案例推理程序設計...............................35 3.1、本體論為基之分散式案例推理架構設計..................................35 3.2、本體論為基之分散式案例推理程序設計..................................37 第四章、本體論為基之分散式案例推理方法發展...............................40 4.1、使用者查詢模式之定義與表達..........................................40 4.2、案例模式之定義與表達................................................43 4.3、歷史案例索引結構定義與建立..........................................45 4.3.1、領域知識模式之定義與表達..........................................45 4.3.2、領域知識模式建立:(An Example)..................................46 4.3.3、案例索引模式定義與表達............................................47 4.3.4、歷史案例索引建立流程..............................................48 4.3.5、案例索引模式建立:(An Example)..................................49 4.4、分散式歷史案例擷取方法發展..........................................50 4.4.1、分散式歷史案例擷取方法程序設計....................................50 4.4.2、分散式歷史案例擷取方法:(An Example) ...........................52 4.4.3、分散式歷史案例擷取流程:(定量)..................................53 4.4.4、分散式歷史案例擷取流程:(定性)..................................60 4.4.5、分散式歷史案例擷取流程:(分群)..................................62 4.4.6、分散式歷史案例擷取流程:(相似度排序) ...........................75 4.5、案例調適方法發展....................................................77 4.5.1、案例調適方法設計..................................................77 4.5.2、本體論語言(OWL)類別限制(Class Constructors)...................77 4.5.3、本體論語言(OWL)公理(Axiom)....................................78 4.5.4、案例調適架構......................................................79 4.5.5、案例調適法則:(An example) .....................................81 第五章、機制實作.........................................................83 5.1、演算法設計..........................................................83 5.2、實作環境介紹........................................................86 5.3、機制實作............................................................86 第六章、結論與未來研究方向...............................................92 6.1、結論................................................................92 6.2、未來研究方向建議....................................................93 參考文獻.................................................................94 英文部分.................................................................94 中文部分.................................................................98

    英文部分

    [1]Aamodt, A. and Plaza, E., Case-based reasoning: foundational issues, methodological variations, and system approaches, AI Communications, Vol. 7,No1, pp.39-59, 1994.
    [2]Agrawal, R., Imilienski, T. and Swami, A., Mining Association Rules between Sets of Items in Large Databases, Proceedings of the ACM SIGMOD Conference, Washington DC, USA, 1993.
    [3]Alonso, G., Fiedler, U., Hagen, C., Lazcano, A., Schuldt, H., and Weiler, N. “ WISE : Business to Business E-Commence, ”Research Issues on Data Engineering: Information Technology for Virtual Enterprises. RIDE-VE '99. Proceedings, Ninth International Workshop, pp.132 -139, 1999.
    [4]Bain, W. M, A Case-Based Reasoning System for Subjective Assessment, In Proceedings of the 5th Annual National Conference on Artificial Intelligence AAAI-86, pp. 523-527, 1998.
    [5]Bergmann, R., and Schaaf, M., Structural Case-Based Reasoning and Ontology-based Knowledge management: a perfect match? Journal of Universal Computer Science,Vol.9, No7, pp.608-626, 2003.
    [6]Bernaras, A., Laresgoiti, I., and Corera, J., Building and reusing ontologies for electrical network applications, In Proceedings of the 12th ECAI, Budapest, Hungary, pp. 298-302, 1996.
    [7]Berners-Lee, Tim.. What the Semantic Web can represent., from WWW:http://www.w3.org/DesignIssues/RDFnot.html , 2004.
    [8]Byrne, J. A., The Virtual Corporation, Business Week, 3304, 1993.
    [9]Carbonell, J.G, Derivational Analogy and Its Role in Problem Solving, In Proceedings of the 3rd Annual National Conference on Artificial Intelligence AAAI-83, Washington, D.C., AAAI, Morgan Kaufmann Publishers. USA, 1983.
    [10]Chen S.H., and Hwang C.L., Fuzzy Multiple Attribute Decision Making Methods and Applications, 1992.
    [11]David B. Leake, Andrew Kinley, and David Wilson, A Case Study of Case-Based CBR, In Proceedings of the 2nd International Conference on Case-Based Reasoning (ICCBR-97), pp. 371-382, 1997.
    [12]Davidow, W. H., and Malone, M. S., The Virtual Corporation, HarperCollins Publisher, Inc., 1992.
    [13]Douglas E. Appelt and David J. Israel, Introduction to Information Extraction Technology, International Joint Conference on Artificial Intelligence (IJCAI-99) Tutorial, Stockholm, Sweden, 1999.
    [14]Dubois, D. and Parade, H., Fuzzy Sets and System: Theory and Application, Academic Press Inc, 1980.
    [15]Fensel, D., Benjamins, V. R., Motta, E. and Wielinga, B., UPML : A framework for knowledge sytem reuse, In Proceedings of the 16th International Joint Conference on AI ( IJCAI - 99 ), pp.16- 21., 1999.
    [16]Fouletier, P., Park, K. H., and Favrel, J., An Inter-organization Information System Design for Virtual Enterprises, Emerging Technologies and Factory Automation Proceedings, ETFA '97., 1997 6th International Conference, pp.139-142 , 1997.
    [17]Goldman, S. L., Nagel, R. N., and Preiss, K., Agile Competitors and Virtual Organizations, International Thomson Publishing, New York ,1994.
    [18]Grenier, R., and Meters, G., Going Virtual : Moving Your Organization into the 21st Century, Prentice-Hall, VJ. ,1995.
    [19]Gruber T.R., A translation Approach to portable ontology specifications. Knowledge Acquisition, vol. 5, pp.199-220., 1993.
    [20]Hattori, K., and Tor, Y., Effective algorithms for the nearest neighbor method in the clustering problem, Pattern Recognition, Vol.26, No.5, pp.741-746, 1993.
    [21]Hendler, J., Agents and the Semantic Web, IEEE Intelligent Systems , Vol.16, No.2, pp. 30-37,2001.
    [22]Hong, T. P., and Lee, C. Y., Induction of fuzzy rules and membership functions from training examples, Fuzzy Sets and Systems, Vol.84, pp.33-47, 1996.
    [23]Hoppner, F., Klawonn, F., Kruse, R., and Runkler, T., Fuzzy Cluster Analysis, John Wiley & Sons Ltd, 1999.
    [24]Huhns, M. N. and Singh, M. P., Ontologies for Agents, IEEE Internet Computing, Vol.6, No.1, pp. 81-83. , 1997.
    [25]Klir, G. J., and Folger, T. A., Fuzzy sets, uncertainty and information, NJ: Prentice-Hall, 1988.
    [26]Klir, G.. J., and Yuan, B., Fuzzy sets, fuzzy logic, and fuzzy systems, NJ: World Scientic. Publishing Co. Pte. Ltd, 1995.
    [27]Kolodner J.L., Case-Based Reasoning, Morgan Kaufmann Publishers, 1993.
    [28]Kwan-Yu Chen, A Method of Hierarchical Case Representation in Case-Based Reasoning Artificial Intelligent Laboratory, E.E. Department of National Chung Cheng University, June, 2000.
    [29]Meade, L., Liles, D. H., and Sarkis, J. Justifying Strategic Alliances and Partnering: A Prerequisite for Virtual Enterprising, Omega, Vol.25, No.1, pp.29-42, 1997.
    [30]Mechitov, A.I., and Moshkovich, H.M., Knowledge Acquisition Tool for Case Based Reasoning System, Expert Systems with Application, Vol.9, No2, pp.201-205,1995
    [31]Nagendra Prasad, M. V., Distributed Case-Based Learning, Fourth International Conference on Multi-Agent Systems , pp. 02-22, 2000.
    [32]Natalya, F. N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., and Musen, M. A. Creating Semantic Web Contents with Protege-2000, IEEE Intelligent Systems, Vol.16, No.2, pp.60-71, 2001.
    [33]Park, K. H., and Favrel, J., Virtual Enterprise — Information System and Networking Solution,Computers and Industrial Engineering, Vol.37, pp.441-444 ,1999.
    [34]Presley, A., Barnett, B., and Liles D. H., A Virtual Enterprise Architecture, Proceedings of the Fourth Annual Agility Forum Conference, 1995.
    [35]Reid, R. L., Tapp, J. B., Liles, D. H., Rogers, K. J., and Jonson, M. E., An Integrated Management Model for Virtual Enterprises : Vision, Strategy and Structure, Engineering and Technology Management, IEMC 96. Proceedings, International Conference, pp.522-527 ,1996.
    [36]Reynaud, C., and F. Tort, Use of Expertise Ontologies in the Knowledge Engineering Process, Proceedings Eighth IEEE International Conference, pp.106-109, 1996.
    [37]Robert, G. and Yorick, W., Information Extraction: Beyond Document Retrieval, Computational Linguistics and Chinese Language Processing, Vol. 3, No. 2, pp. 7-60, 1998.
    [38]Rolstadas, A., Enterprise Modelling for Competitive Manufacturing, Control Eng. Practice, Vol.3, No.1, pp.43-50, 1995.
    [39]Schank, R. C. and Abelson, R.P., Scripts, Plans, Goals and Understanding, Lawrence Erlbaum Associates, Hillsdate N.J., 1977.
    [40]Smith, B. and Welty, C., Ontology: Towards a New Synthesis, In Proceedings of the International Conference on Formal Ontology in Information Systems, pp. 3-9, 2001.
    [41]Smyth B. and Keane M., Using Adaptation knowledge to Retrieve and adapt design cases, Journal of Knowledge Based Systems, 1996.
    [42]Strader, T. J., Lin, F. R., and Shaw, M. J., Information Infrastructure for Electronic Virtual Organization Management, Decision Support System, Vol.23, pp.75-94 ,1998.
    [43]Swartout, B., Patil, R., Knight, K. and Russ, T., Toward distributed use of large - scale ontologies, In Spring Symposium Series on Ontological Engineering, AAAI Press, Stanford, pp. 33-40 , 1997.
    [44]Tuma, A., Configuration and Coordination of Virtual Production Networks, International journal of production economics, pp.641-649,1998.
    [45]Umar, A., and Missier, P.,A Framework for Analyzing Virtual Enterprise Infrastructure, Research Issues on Data Engineering: Information Technology for Virtual Enterprises, RIDE-VE '99. Proceedings, Ninth International Workshop, pp. 4 -11 , 1999.
    [46]W3C , Resource Description Framework (RDF) Concepts and Abstract Syntax, Working Draft 05 September 2003.
    [47]W3C, Resource Description Framework (RDF), Editors' Working Draft 24 June 2002.
    [48]Wang, L.X., and J.M. Mendel, Generating Fuzzy Rules by Learning from Examples, IEEE Transactions on Systems, Man, and Cybernetics, Vol.22, NO.6, pp.1414-1427, 1992.
    [49]Watson, I., Case-based reasoning is a methodology not a technology, Knowledge-Based Systems, Vol. 12, pp. 303-308,1999.
    [50]Watson. I. and Marir, F., Case-Base Reasoning: A Review. The Knowledge Engineering Review, Vol.9, No.4, pp.355-381, 1994.
    [51]Web Ontology Language (OWL Lite, OWL DL, OWL Full ) Feature Synopsis Version 1.0,http://www.ksl.stanford.edu/people/dlm/webont/OWLFeatureSynopsisJan22003.htm
    [52]Web-Ontology(WebOnt) Working Group http://www.w3.org/2001/sw/WebOnt/
    [53]Wolfgang Wilke and Ralph Bergmann, Techniques and Knowledge used for Adaptation during Case-Based Problem Solving, IEA, 1998.
    [54]Yen John and Reza Langari, Fuzzy Logic Intelligence, Control,andInformation , Prentice-Hall,Inc., 1999.
    [55]Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning, Information Science, vol.8, pp.199-249(I), 1975.
    [56]Zadeh, L. A.. Fuzzy Set, Information and Control, Vol.8, pp.338-353, 1965.
    [57]Zhoy, Q., Souben, P., and Besant, C. B., An Information Management System for Production Planning in Virtual Enterprises, Computers ind. Engng.,Vol.35, No.1-2, pp.153-156 ,1998.

    中文部分

    [58]方榮吉,「以案例式推理建構主機板製程分析系統」,台北科技大學生產系統工程與管理研究所碩士論文,民國九十一年六月。
    [59]王文俊,「認識Fuzzy」,全華科技圖書股份有限公司,台北,民國八十八年。
    [60]王進德、蕭大全,「類神經網路與模糊控制理論入門」,金華科技圖書,民國九十年。
    [61]王瑞德,「模糊理論與TOPSIS法於失效模式效應分析之應用」,逢甲大學工業工程研究所碩士論文,民國九十二年元月。
    [62]向殿政男,「Fuzzy手法進階」,中國生產力中心技術引進服務組編譯,楊英魁校閱,初版,台北市,全華科技圖書股份有限公司出版,民國八十一年。
    [63]何錦忠,「以風險分析為概念的失效模式與效應分析之發展與應用-以汽車零組件之個案研究」,大葉大學資訊管理研究所碩士論文,民國九十三年六月。
    [64]曹世亮,「永續學習的e-Learning 架構:以學習型組織為基礎的探討」,2001 資訊與教育雜誌特刊,pp.163~179,民國九十四年
    [65]陳彥杰,「功能特徵與工程規格為基之設計參考模式擷取技術研發」,國立成功大學製造工程研究所碩士論文,民國九十四年六月。
    [66]葉怡成,「類神經網路模式應用與實作」,儒林出版社,台北,民國九十二年。
    [67]蘇建源,「模糊邏輯與資料探勘技術為基礎在顧客關係管理上之研究與應用」,南華大學資訊管理研究所碩士論文,民國九十三年六月。

    下載圖示 校內:2007-08-30公開
    校外:2007-08-30公開
    QR CODE