簡易檢索 / 詳目顯示

研究生: 楊英傑
Yang, Ying-Chieh
論文名稱: 硫酸化氧化鋯觸媒在烷烴異構化反應之劣化現象及經再生與改質之效能
Deactivation of Sulfated Zirconia Catalysts in Alkane Isomerization and Their Performance after Regeneration and Modification
指導教授: 翁鴻山
Weng, Hung-Shan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 294
中文關鍵詞: 硫酸化氧化鋯烷烴異構化再生
外文關鍵詞: Sulfated Zirconia, Alkane Isomerization, Regeneration
相關次數: 點閱:76下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是研究硫酸化氧化鋯(SZ)觸媒催化烷烴異構化反應之劣化現象及經再生與改質之效能,分別就氫氣對異構化反應扮演的角色、觸媒製備、異構化反應機構、觸媒改質及使用後的觸媒再生做一系列研究。
    為探討烷烴異構化反應之劣化現象,首先以含鋁之硫酸化氧化鋯觸媒(SZA)探討以氫氣和氮氣為攜行氣體對n-C4異構化反應活性及劣化的影響。在250oC下,觸媒上的積碳可以經由和氫氣反應而部份移除,因此以氫氣當攜行氣體時的觸媒穩定性遠高於氮氣的情形。在150oC下,氫氣無法和積碳反應將積碳去除,氫氣只能扮演抑制積碳的角色。布忍思特酸在n-C4異構化反應扮演關鍵角色,積碳的觸媒在250℃下,可以經由氫氣的引入而逐步恢復部份活性,但是氫氣必須先吸附在布忍思特酸基上再與鄰近的積碳反應,當布忍思特酸基完全被積碳覆蓋後,觸媒就無法再生。
    由上述的研究發現觸媒上的積碳可以經由和氫氣反應而部份移除,為延長觸媒使用壽命及改善以空氣當再生氣體存在的危險及不方便,本論文將n-C4異構化反應後的SZA觸媒嘗試以氫氣再生。但是在常壓氫氣下的再生速率低,再生20-30小時,約只有20-30 %的積碳可以被去除。本研究嘗試以2.1 MPa氫氣當再生氣體,發現在250℃下再生8小時,觸媒的再生效率可達98 %以上。
    硫酸化氧化鋯觸媒製備方法可分為傳統法及模板法,本研究以催化n-C6異構化反應活性高低篩選這兩種觸媒並相互比較。兩種觸媒的活性皆隨SO42-/Zr的比例而變,都有最佳值存在,且反應活性相當;n-C6裂解百分率隨異構化轉化率的變化趨勢也幾乎相同,因此未來無需採用模板法,而在本論文的後續研究也都以傳統法製備硫酸化氧化鋯觸媒。
    研究烷烴異構化反應機構有助於了解觸媒反應活性及選擇率高低之原因及如何將觸媒改質,本研究使用三種不同方法製備之含鉑觸媒,除了以n-C6當進料外,也在n-C6中混合1-己烯及1-戊烯,藉由它們的轉化情形探討烷烴異構化反應機構。SZ先經鍛燒再含浸鉑鹽的Pt(po)/SZ觸媒的鉑的粒徑約1-2nm,具高分散度。而SZ未先鍛燒就含浸鉑鹽的Pt(pr)/SZ觸媒上的鉑顆粒有嚴重聚集現象,鉑平均粒徑約10nm。Pt(po)/SZ觸媒具有雙功能特性,異構化反應有部份進行雙分子反應再裂解成iso-C6,且Pt(po)/SZ觸媒具有良好的加氫能力。Pt(pr)/SZ觸媒為單功能反應機構,此觸媒的鉑之氫化功能則很低,所以n-C6經由雙分子反應生成的寡聚合物,易聚集形成嚴重積碳。物理混合的Pt/Al2O3+SZ觸媒只具部份雙功能反應機構,觸媒上的金屬及酸基距離太遠,鉑功能受到影響,也容易形成積碳。
    以上述之研究成果為基礎,本研究嘗試降低硫酸化氧化鋯觸媒中硫酸根含量並添加鋁,讓觸媒能大幅提高n-C7異構化反應選擇率,又不影響觸媒反應活性。低硫酸根含量的Pt/SZA觸媒具有酸性低、高鉑分散度的特性(即具有高nPt/nA比例),可以大幅提高鉑功能,而有效降低裂解反應,而大幅提高n-C7異構化反應選擇率。提高鉑含量可以提高中等酸,降低強酸,又可以提高nPt/nA比例,因此可以進一步提高n-C7異構化反應選擇率。與商業異構化觸媒及Pt/WZr做比較,本研究所改良之最佳觸媒,同時具有最佳n-C7異構化反應活性及選擇性。

    In order to investigate the deactivation phenomena of sulfated zirconia (SZ) in alkane isomerization and the performance after regeneration and modification, this dissertation performed a series of studies, including the role of hydrogen on n-C4 isomerization, the effect of catalyst preparation method, reaction mechanism of alkane isomerization, catalyst modification and regeneration of coked catalysts.
    For elucidating the causes of deactivation in alkane isomerization, hydrogen and nitrogen were introduced to study the effect on catalyst activity and stability over alumina-promoted sulfated zirconia. Findings show relatively much stable Al/SZ (SZA) catalyst activity with H2 introduction at 250oC due to coke can be removed by reacting with hydrogen; however hydrogen inhibits isobutane formation and cannot react with coke at 150 oC. Catalytic activity restoration is via the reaction between coke and adsorbed hydrogen on the BrØnsted acid sites. This work finds that the fouled catalyst is regenerated, though not completely, by hydrogen, provided it is not fully deactivated and that activity cannot be restored if n-butane conversion is down to zero (i.e. the catalyst is completely deactivated).
    To extend catalyst life, this study tested three methods to regenerate the used SZA after n-C4 isomerization. Although over 97 % of original activity could be regained using air as a regenerating gas, but it has the inconvenience and danger in the reaction system containing hydrogen. It was observed by the TGA-MS and GC that the coke on the used catalyst could react with hydrogen at 250oC, but the original activity regained was low, only 20-30 %, when using atmospheric hydrogen as a regenerating gas. Fortunately, over 98 percent of original activity could be regained using hydrogen of 2.1 MPa at 250oC within 8 h. The operation temperature for this new regeneration method is much lower than that for conventional methods using air or oxygen as a regenerating gas. The high regeneration efficiency owes to high hydrogen adsorption ability on catalyst active sites under high hydrogen pressure.
    Sulfated zirconia catalysts for n-C6 isomerization were prepared with two methods, traditional and template methods. Catalytic activity varies with the SO42-/Zr ratio and has an optimum ratio for both kinds of catalysts. Furthermore, the catalytic activity and cracking ratio are similar for these two kinds of catalysts with optimum SO42-/Zr ratio on n-C6 isomerization. Therefore, it does not need to adopt the template method for practical uses. The catalysts prepared by the traditional method were employed for the rest of this study.
    The investigation on the reaction mechanism of alkane isomerization is helpful for understanding its relation with catalytic activity and selectivity, and is beneficial to the modification of catalyst. This study used three different kinds of Pt/SZ catalysts for investigating the reaction mechanism of alkane isomerization with introduction of pure n-C6 or n-C6 mixed with 1-hexene and 1-pentene. The properties of Pt on Pt(po)/SZ and Pt(pr)/SZ are quite different, the sizes of Pt particles are about 1-2 nm and disperse well on Pt(po)/SZ, while those are about 10 nm and seriously accumulate together on Pt(pr)/SZ. Over Pt(po)/SZ, alkane isomerization mainly proceeds by the bifunctional mechanism, and i-C6 is produced by bimolecular reaction and part of it than further cracks. Finding also shows that good hydrogenation ability over Pt(po)/SZ catalyst. However, over Pt(pr)/SZ, alkane isomerization mainly proceeds via the monofunctional path and serious coking was observed. The coke was formed by olegermer produced with bimolecular reaction due to low hydrogenation ability over Pt(pr)/SZ catalyst. Part of alkane isomerization proceeds with the bifunctional mechanism over Pt/Al2O3+SZ catalyst. Pt function does not work well and causes the coke formation due to the distance between Pt sites and acid sites being too far.
    Based on the above research results, this work tried to reduce the occurrence of cracking reactions without depressing the catalyst activity for n-heptane isomerization by lowering the sulfur content and adding Al to the sulfated zirconia catalyst. It was found that lowering sulfate content in the Al-promoted Pt/SZ resulted in remarkably enhanced selectivity towards iso-C7 formation from 25 % up to 83 %, compared with Pt/SZ, without a loss of activity. The results of catalyst characterization revealed that the tetragonal phase of ZrO2 and the acidity were responsible for the higher activity, and that aluminum helped to stabilize the tetragonal phase in Al-promoted Pt/SZ and hence maintained catalytic activity at low sulfate content, while the low acidity and high Pt dispersion resulted in a high ratio of metal sites to acid sites and hence benefited to a higher selectivity for iso-C7. Iso-C7 selectivity can be enhanced with a higher Pt content because both intermediate acid sites and nPt/nA ratio are increased. The best catalyst in this study has a higher activity and selectivity for n-C7 isomerization compared with commercial alkane isomerization catalyst and Pt/WZr catalyst.

    中文摘要----------------------------------------------------------------------------- Ⅰ 英文摘要---------------------------------------------------------------------------- Ⅲ 誌謝---------------------------------------------------------------------------------- Ⅵ 目錄---------------------------------------------------------------------------------- Ⅷ 表目錄------------------------------------------------------------------------------ ⅩⅡ 圖目錄------------------------------------------------------------------------------ ⅩⅤ 第一章 緒論------------------------------------------------------------------------ 1 1.1 前言------------------------------------------------------------------------ 1 1.2 研究動機-------------------------------------------------------------------- 1 1.3 論文研究內容----------------------------------------------------------------- 2 第二章 文獻回顧---------------------------------------------------------------------- 5 2.1 固體酸觸媒----------------------------------------------------------------------- 5 2.1.1 固體酸強度定義------------------------------------------------------- 5 2.1.2 固體超酸 (Solid superacids)----------------------------------------- 7 2.1.3 固體酸觸媒的酸強度和酸量的量測方法-------------------------------------- 10 2.1.4 固體酸觸媒的應用----------------------------------------------------- 16 2.2 烷烴異構化反應------------------------------------------------------------- 20 2.2.1 烷烴異構化觸媒發展歷史------------------------------------------------ 20 2.3 硫酸化氧化鋯觸媒的酸性基結構------------------------------------------------- 27 2.4 硫酸化氧化鋯觸媒的種類及當前應用於烷烴異構化反應 的問題------------------------------------------------------------------------------ 36 2.4.1 硫酸化氧化鋯觸媒的種類------------------------------------------------- 36 2.4.2 硫酸化氧化鋯觸媒應用於烷烴異構化反應的問題------------------------------- 48 第三章 觸媒製備與鑑定及反應實驗設備與步驟--------------------------- 63 3.1 使用藥品及氣體-------------------------------------------------------- 63 3.2 觸媒製備----------------------------------------------------------------- 65 3.3 觸媒物化性鑑定分析-------------------------------------------------- 66 3.4 觸媒活性測試裝置及操作步驟-------------------------------------- 76 第四章 含鋁硫酸化氧化鋯觸媒催化正丁烷異構化反應時的劣化現象 及氫氣扮演的角色------------------------------------------------------ 80 4.1 前言----------------------------------------------------------------------- 80 4.2 實驗部份----------------------------------------------------------------- 81 4.3 結果與討論-------------------------------------------------------------- 83 4.3.1 觸媒特性分析------------------------------------------------------ 83 4.3.2 250oC下觸媒的劣化現象及氫氣扮演的角色-------------- 83 4.3.2.1 觸媒活性與產品選擇率----------------------------------- 83 4.3.2.2 觸媒積碳及其成份分析----------------------------------- 89 4.3.2.3 觸媒酸性及酸量變化--------------------------------------- 92 4.3.3 150oC下觸媒的劣化現象及氫氣扮演的角色-------------- 97 4.3.4 積碳去除機構---------------------------------------------------- 100 4.4 結論--------------------------------------------------------------------- 102 第五章 以高壓氫氣再生積碳的含鉑硫酸化氧化鋯觸媒---------------- 103 5.1 前言--------------------------------------------------------------------- 103 5.2 實驗部份--------------------------------------------------------------- 103 5.3 結果與討論------------------------------------------------------------ 104 5.3.1 含積碳的SZA觸媒特性分析--------------------------------- 104 5.3.2 碳與空氣或氫氣的反應---------------------------------------- 110 5.3.3 積碳觸媒在氫氣或空氣氣下再生---------------------------- 114 5.3.4 氫氣再生反應機構---------------------------------------------- 125 5.4 結論--------------------------------------------------------------------- 127 第六章 以模板製備與傳統硫酸化氧化鋯觸媒性能之比較-------------- 128 6.1 前言---------------------------------------------------------------------- 128 6.2 實驗部份---------------------------------------------------------------- 128 6.3 結果與討論------------------------------------------------------------- 129 6.3.1 模板法硫酸化氧化鋯觸媒物性分析-------------------------- 129 6.3.2 傳統法硫酸化氧化鋯觸媒物性分析------------------------- 141 6.3.3 模板法與傳統法硫酸化氧化鋯觸媒用於正已烷異構 化反應之活性比較---------------------------------------------- 146 6.3.4 正己烷異構化產物分佈--------------------------------------- 153 6.4 結論--------------------------------------------------------------------- 163 第七章 以含鉑的硫酸化氧化鋯觸媒催化C5 - C7異構化之反應 機構-------------------------------------------------------------------- 165 7.1 前言--------------------------------------------------------------------- 165 7.2 實驗部份--------------------------------------------------------------- 166 7.3 結果與討論------------------------------------------------------------ 167 7.3.1 觸媒物性分析---------------------------------------------------- 167 7.3.2 不同鉑特性觸媒催化正己烷異構化反應之效能----------- 178 7.3.3 進料中添加1-己烯或1-戊烯對觸媒異構化反應之 影響---------------------------------------------------------------- 182 7.3.3.1 0.2Pt(po)/SZ觸媒---------------------------------------- 182 7.3.3.2 0.2Pt(pr)/SZ觸媒---------------------------------------- 186 7.3.3.3 Pt/Al2O3+SZ物理混合觸媒--------------------------- 189 7.3.4 反應動力學探討------------------------------------------------- 194 7.3.4.1 氫氣分壓對觸媒活性的影響--------------------------- 195 7.3.4.2 正庚烷分壓對觸媒活性的影響------------------------ 198 7.3.4.3 外顯活化能( Apparent activation energy)------------- 200 7.3.4.4 雙功能反應機構------------------------------------------ 203 7.4 結論--------------------------------------------------------------------- 206 第八章 具低硫含量且含鋁的Pt/SO42-/ZrO2觸媒用於正庚烷異構 化反應之效能---------------------------------------------------------- 208 8.1 前言--------------------------------------------------------------------- 208 8.2 實驗部份--------------------------------------------------------------- 209 8.3 結果與討論------------------------------------------------------------ 210 8.3.1 改變硫酸根含量的效應---------------------------------------- 210 8.3.1.1 觸媒特性分析--------------------------------------------- 210 8.3.1.1.1 觸媒孔洞大小及BET比表面積分析------- 210 8.3.1.1.2 硫酸根含量及酸性分析----------------------- 213 8.3.1.1.3 XRD分析--------------------------------------- 217 8.3.1.1.4 H2-TPR 及H2-TPD分析--------------------- 219 8.3.1.1.5 鉑分散度計算------------------------------------ 223 8.3.1.2 反應測試---------------------------------------------------- 224 8.3.1.2.1 Pt/SZ和Pt/SZA觸媒性能------------------- 224 8.3.1.2.2 Pt/SZ和Pt/SZA觸媒異構化選擇率------- 228 8.3.1.2.3 產品的異構化 / 裂解反應比例及 單側鏈/多側鏈異構物比例------------------ 233 8.3.2 改變鉑含量的效應--------------------------------------------- 238 8.3.2.1 觸媒特性分析--------------------------------------------- 238 8.3.2.2 觸媒反應測試--------------------------------------------- 246 8.3.3 觸媒反應動力學及反應機構研究---------------------------- 256 8.4 結論--------------------------------------------------------------------- 262 第九章 總結論及未來研究方向與建議-------------------------------------- 263 9.1 總結論------------------------------------------------------------------- 263 9.2 未來研究方向與建議------------------------------------------------- 266 參考文獻-------------------------------------------------------------------------- 267 附錄 烷烴異構化反應之雙功能反應機構---------------------------------- 280

    1. Adeeva V., de Haan J. W., Jänchen J., Lei G. D., Schünemann G., van de Ven L. J. M., Sachtler W. M. H., van Santen R. A., J. Catal. 151 (1995) 364.
    2. Adeeva V., Lei G. D., Sachtler W. M. H., Catal. Lett. 33 (1995) 135.
    3. Adeeva V., Sachtler W. M. H., Appl. Catal. A: Gen. 163 (1997) 237.
    4. Ahmad R., Melsheimer J., Jentoft F. C., Schlögl R., J. Catal. 218 (2003) 365.
    5. Akkari R., Ghorbel A., Essayem N., Figueras F., Appl. Catal. A : Gen. 328 (2007) 43.
    6. Alvarez W. E., Liu H., Resasco D. E., Appl. Catal. A: Gen. 162 (1997) 103.
    7. Arata K., Hino M., Mater. Chem. Phys. 26 (1990) 213.
    8. Arribas M. A., Márquez F., Martínez A., J. Catal. 190 (2000) 309.
    9. Asselin G. F., ACS, New York, August, B4-B18, (1972).
    10. Babou F., Bigot B., Coudurier G., Sautet P., Védrine J. C., Stud. Surf. Sci. Catal. 90 (1994) 519.
    11. Babou F., Coudurier G., Védrine J. C., J. Catal. 152 (1995) 341.
    12. Bauer F., Ernst H., Geidel E., Schödel R., J. Catal. 164 (1996) 146.
    13. Belloum M., Travers Ch., Bournonville J. P., Rev. Inst. Fr. Petr. 46 (1991) 89.
    14. Belskaya O. B., Danilova I. G., Kazakov M. O., Gulyaeva T. I., Kibis L. S., Boronin A. I., Lavrenov A. V., Likholobov V. A., Appl. Catal. A: Gen. 387 (2010) 5.
    15. Blin J. L., Flamant R., Su B. L., Inter. J. Inorg. Mater. 3 (2001) 959.
    16. Blomsma E., Martens J. A., Jacobs P. A., J. Catal. 155 (1995) 141.
    17. Blomsma E., Martens J. A., Jacobs P. A., J. Catal. 159 (1996) 323.
    18. Bouchenafa-Saïb N., Issaadi R., Grange P., Appl. Catal. A: Gen. 259 (2004) 9.
    19. Brower D. M., Hogeveen H., Prog. Phys. Org. Chem. 9 (1972) 179.
    20. Cao C. J., Han S., Chen C. L., Xu N. P., Mou C. Y., Catal. Commun. 4 (2003) 511.
    21. Cera C. R.,Yori J. C., Parera J. M., Appl. Catal. A: Gen. 167 (1998) 75.
    22. Cerrato G., Morterra C., Delgado M. R., Areán C. O., Signoretto M., Somma F., Pinna F., Micropor. Mesopor. Mater. 94 (2006) 40.
    23. Chen C. L., Cheng S., Lin H. P., Wong S. T., Mou C. Y., Appl. Catal. A: Gen. 215 (2001) 21.
    24. Chen C. L., Li T., Cheng S., Xu N., Mou C. Y., Catal. Lett. 78 (2002) 223.
    25. Chen F. R., Coudurier G., Joly J. F., Védrine J. C., J. Catal. 143 (1993) 616.
    26. Chen L. W., Chou C. Y., Ko A. N., Appl. Catal. A: Gen. 178 (1999) L1.
    27. Chen W. H., Ko H. H., Sakthivel A., Huan S. J., Liu S. H., Lo A. Y., Tsai T. C., Liu S. B., Catal. Today 116 (2006) 111.
    28. Chica A., Corma A., J. Catal. 187 (1999) 167.
    29. Chu H. Y., Rosynek M. P., Lunsford J. H., J. Catal. 178 (1998) 352.
    30. Chu W., Yang X., Shan Y., Ye X., Wu Y., Catal. Lett. 42 (1996) 201.
    31. Ciesla U., Fröba M., Stucky G., Schüth F., Chem. Mater. 11 (1999) 227.
    32. Clearfield A., Serrette G. P. D., Khazi-Syed A. H., Catal. Today 20 (1994) 295.
    33. Comelli R. A., Finelli Z. R., Vaudagna S. R., Fígoli N. S., Catal. Lett. 45 (1997) 227.
    34. Condon J. B., Elsevier, Amsterdam (2006) 6.
    35. Corma A., Juan-Rajadell M. I., Lopez-Nieto J. M., Martinez A., Martinez C., Appl. Catal. A: Gen. 116 (1994) 151.
    36. Dapaah J. K. A., Uemichi Y., Ayame A., Matsuhashi H., Sugioka M., Appl. Catal. A: Gen. 187 (1999) 107.
    37. de Lucas A., Sánchez P., Dorado F., Ramos M. J., Valverde J. L., Appl. Catal. A: Gen. 294 (2005) 215.
    38. Demirci Ü. B., Garin F., Catal. Lett. 76 (2001) 45.
    39. Demirci Ü. B., Garin F., J. Mol. Catal. 188 (2002) 233.
    40. Demirci Ü. B., Garin F., J. Mol. Catal. 271 (2007) 216.
    41. Devulapeli V. G., Weng H. S., Catal. Commun. 10 (2009) 1711.
    42. Dicko A., Song X., Adnot A., Sayari A., J. Catal. 150 (1994) 254.
    43. Duchet J. C., Guillaume D., Monnier A., Dujardin C., Gilson J. P., van Gestel J., Szabo G., Nascimento P., J. Catal. 198 (2001) 328.
    44. Dwyer F. G., in: Catalysis of Organic Reactions (Moser W. R., Ed.) Marcel Dekker Inc., New York, Basel (1981) 39.
    45. Ebitani K., Konishi J., Hattori H., J. Catal. 130 (1991) 257.
    46. Ebitani K., Tsuji J., Hattori H., Kita H., J. Catal. 135 (1992) 609.
    47. Emeis C. A., J. Catal. 141 (1993) 347.
    48. Essayem N., Taârit Y. B., Feche C., Gayraud P. Y., Sapaly G., Naccache C., J. Catal. 219 (2003) 97.
    49. Fărcaşiu D., Li J. Q., Cameron S., Appl. Catal. A: Gen. 154 (1997) 173.
    50. Föttinger K., Halwax E., Vinek H., Appl. Catal. A: Gen. 301 (2006) 115.
    51. Föttinger K., Zorn K., Vinek H., Appl. Catal. A: Gen. 284 (2005) 69.
    52. Freude D., Advan. Colloid and Interface Sci. 23 (1985) 21.
    53. Fuxiang L., Feng Y., Yongli L., Ruifeng L., Kechang X., Micropor. Mesopor. Mater. 101 (2007) 250.
    54. Gao L., Gu F. N., Zhou Y., Yang J., Wang Y., Zhu J. H., J. Hazardous Mater. 171 (2009) 378.
    55. Gao Z., Xia Y. D., Hua W. M., Miao C. X., Top. Catal. 6 (1998) 101.
    56. Garin F., Seyfried L., Girard P., Maire G., Abdulsamad A., Sommer J., J. Catal. 151 (1995) 26.
    57. Gontier S., Tuel A., Stud. Surf. Sci. Catal. 101 (1997) 29.
    58. Grau J. M., Vera C. R., Parera J. M., Appl. Catal. A: Gen. 172 (1998) 311.
    59. Garg S., Soni K., Kumaran G. M., Bal R., Gora-Marek K., Gupta J. K., Sharma L. D., Dhar G. M., Catal. Today, 141 (2009) 125.
    60. Gregg S. J., Sing K. S. W., Academic Press Inc., London (1982).
    61. Guisnet M., Alvarez F., Giannetto G., Perot G., Catal. Today 1 (1987) 415.
    62. Hammache S., Goodwin Jr. J. G., J. Catal. 211 (2002) 316.
    63. Hammache S., Goodwin Jr. J.G., J. Catal. 218 (2003) 258.
    64. Hammett L. P., Deyrup A. J., J. Am. Chem. Soc. 54 (1932) 2721.
    65. Hernández M. L., Montoya J. A., Del Angel P., Hernández I., Espinosa G., Llanos M. E., Catal. Today 116 (2006) 169.
    66. Hino M., Kobayashi S., Arata K., J. Am. Chem. Soc. 101 (1979) 6439.
    67. Hino M., Arata K., J. Chem. Soc., Chem. Commun. (1980) 851.
    68. Holló A., Hancsók J., Kalló D., Appl. Catal. A: Gen. 229 (2002) 93.
    69. Hua W., Sommer J., Appl. Catal. A: Gen. 227 (2002) 279.
    70. Hua W., Sommer J., Appl. Catal. A: Gen. 232 (2002) 129.
    71. Hua W., Xia Y., Yue Y., Gao Z., J. Catal. 196 (2000) 104.
    72. Hua W., Goeppert A., Sommer J., J. Catal. 197 (2001) 406.
    73. Hua W., Yue Y., Gao Z., J. Mol. Catal. 170 (2001) 195.
    74. Huang Y. Y., McCarthy T. J., Sachtler W. M. H., Appl. Catal. A: Gen. 148 (1996) 135.
    75. Hwang C. C., Mou C. Y., Appl. Catal., 365 (2009) 173.
    76. Iglesia E., Barton D. G., Soled S. L., Miseo S., Baumgartner J. E., Gates W. E., Fuentes G. A., Meitzner G. D., Stud. Surf. Sci. Catal. 101 (1996) 533.
    77. Iglesia E., Soled S. L., Kramer G. M., J. Catal. 144 (1993) 238.
    78. Iizuka T., Ogasawara K., Tanabe K., Bull. Chem. Soc. Jpn. 56 (1983) 2927.
    79. Inagaki S., Fukushima Y., Kurode K., J. Chem. Soc., Chem. Commun. (1993) 1617.
    80. Itoh M., Hattori H., Tanabe K., J. Catal. 35 (1974) 225.
    81. Ivanov A. V., Kustov L. M., Vasina T. V., Kazanskii V. B., Zeuthen P., Kinet. Catal. 38 (1997) 403.
    82. Ivanov A. V., Lysenko S. V., Baranova S. V., Sungurov A. V., Zangelov T. N., Karakhanov E. A., Micropor. Mesopor. Mater. 91 (2006) 154.
    83. Ivanov A. V., Stakheev A. Yu., Kustov L. M., Stud. Surf. Sci. Catal. 130 (2000) 263.
    84. Jin T., Machida M., Yamaguchi T., Tanabe K., Inorg. Chem. 23 (1984) 4396.
    85. Jin T., Yamaguchi T., Tanabe K., J. Phys. Chem. 90 (1986) 4794.
    86. Jong S. J., Pradhan A. R., Wu J. F., Tsai T. C., Liu S. B., J. Catal. 174 (1998) 210.
    87. Katada N., Endo J. I., Notsu K. I., Yasunobu N., Naito N., Niwa M., J. Phys. Chem. B 104 (2000) 10321.
    88. Kayo A., Yamaguchi T., Tanabe K., J. Catal. 83 (1983) 99.
    89. Kim S. Y., Goodwin Jr. J. G., Galloway D., Catal. Today 63 (2000) 21.
    90. Kim S. Y., Goodwin Jr. J. G., Fărcaşiu D., Appl. Catal. A: Gen. 207 (2001) 281.
    91. Kim S. Y., Goodwin Jr. J. G., Hammache S., Auroux A., Galloway D., J. Catal. 201 (2001) 1.
    92. Kondo J. N., Yang S., Zhu Q., Inagaki S., Domen K., J. Catal. 248 (2007) 53.
    93. Kouwenhoven H. W., in: Molecular Sieves, Katzer J. Ed. 48 (1972) 529.
    94. Kozhevnikov I. V., Sinnema A., Jansen R. J. J., Pamin K., van Bekkum H., Catal. Lett. 30 (1995) 241.
    95. Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature 359 (1992) 710.
    96. Kustov L. M., Kazansky V. B., Figueras F., Tichit D., J. Catal. 150 (1994) 143.
    97. Laizet J. B., Søiland A. K., Leglise J., Duchet J. C., Top. Catal. 10 (2000) 89.
    98. Larsen G., Lotero E., Parra R. D., in “Proceedings, 11th International Congress on Catalysis, Baltimore,” (Hightower J. W., Delgass W. N., Iglesia E., and Bell A. T., Eds.), Elsevier, Amsterdam (1996) 543.
    99. Lei T., Hua W. M., Tang Y., Yue Y. H., Gao Z., Chem. J. Chin. Univ. 21 (2000) 1240.
    100. Lei T., Xu J. S., Hua W. M., Tang Y., Gao Z., Catal. Lett. 61 (1999) 213.
    101. Lei T., Xu J. S., Tang Y., Hua W. M., Gao Z., Appl. Catal. A: Gen. 192 (2000) 181.
    102. Li B., Gonzalez R. D., Appl. Catal. A: Gen. 165 (1997) 291.
    103. Li B., Gonzalez R. D., Catal. Today 46 (1998) 55.
    104. Li C., Stair P. C., Catal. Lett. 36 (1996) 119.
    105. Li X., Nagaoka K., Lercher J. A., J. Catal. 227 (2004) 130.
    106. Li X., Nagaoka K., Simon L. J., Olindo R., Lercher J. A., J. Catal. 232 (2005) 456.
    107. Liu H., Lei G. D., Sachtler W. M. H., Appl. Catal. A: Gen. 146 (1996) 165.
    108. Liu H., Lei G. D., Sachtler W. M. H., Appl. Catal. A: Gen. 137 (1996) 167.
    109. Løften T., Blekkan E. A., Appl. Catal. A: Gen. 299 (2006) 250.
    110. Løften T., Gnep N. S., Guisnet M., Blekkan E. A., Catal. Today 100 (2005) 397.
    111. Lohitharn N., Goodwin Jr. J. G., J. Catal. 245 (2007) 198.
    112. Lohitharn N., Goodwin Jr. J. G., Lotero E., J. Catal. 234 (2005) 199.
    113. Lutecki M., Breitkopf C., Appl. Catal. A: Gen. 352 (2009) 171.
    114. Ma Z., Hua W., Ren Y., He H., Gao Z., Appl. Catal. A: Gen. 256 (2003) 243.
    115. Manoli J. M., Potvin C., Muhler M., Wild U., Resofszki G., Buchholz T., Páal Z., J. Catal. 178 (1998) 338.
    116. Marcus R. L., Gonzalez R. D., Kugler E. L., Aroux A., Chem. Eng. Commun. 190 (2003) 1601.
    117. Matsuda T., Uchijima F., Endo S., Takahashi N., Appl. Catal. A: Gen. 176 (1999) 91.
    118. Matsuhashi H., Shibata H., Nakamura H., Arata K., Appl. Catal. A: Gen. 187 (1999) 99.
    119. Matsuhashi H., Tanaka M., Nakamura H., Arata K., Appl. Catal. A: Gen. 208 (2001) 1.
    120. Matsushita K., Hauser A., Marafi A., Koide R., Stanislaus A., Fuel 83 (2004) 1031.
    121. McCarty J. G., Wise H., J. Catal. 57 (1979) 406.
    122. McIntosh D. J., Kydd R. A., Micropor. Mesopor. Mater. 37 (2000) 281.
    123. Meisel S. L., McCullough J. P., Lechthaler C. H., Weisz P. B., Chemtech. 6 (1976) 86.
    124.Menon P. G., J. Mol. Catal. 59 (1990) 207.
    125. Mercera P. D. L., Van Ommen J. G., Doesburg E. B. M., Burggraaf A. J., Ross J. R. H., Appl. Catal. A: Gen. 57 (1990) 127.
    126. Miyaji A., Ohnishi R., Okuhara T., Appl. Catal. A: Gen. 262 (2004) 143.
    127. Moreno J. A., Poncelet G., J. Catal. 203 (2001) 453.
    128. Morrow B. A., McFarlane R. A., Loin M., Lavalley J. C., J. Catal. 107 (1987) 232.
    129. Morterra C., Cerrato G., Pinna F., Signoretto M., J. Phys. Chem. 98 (1994) 12373.
    130. Nakano Y., Iizuka T., Hattori H., Tanabe K., J. Catal. 57 (1978) 1.
    131. Ng F. T. T., Horvát N., Appl. Catal. A: Gen. 123 (1995) 197.
    132. Norman C. J., Goulding P. A., Mcalpine I., Catal. Today 20 (1994) 313.
    133. Ono Y., Catal. Today 81 (2003) 3.
    134. Paál Z., Wild U., Muhler M., Manoli J. M., Potvin C., Buchholz T., Sprenger S., Resofszki G., Appl. Catal. A: Gen. 188 (1999) 257.
    135. Paál Z., Xu X. L., Paál-Lukács J., Vogel W., Schlögl R., Muhler M., J. Catal. 152 (1995) 252.
    136. Pinna F., Signoretto M., Strukul O., Cerrato G., Morterra C., Catal. Lett. 26 (1994) 339.
    137. Pope T. D., Kriz J. F., Stanciulescu M., Monnier J., Appl. Catal. A: Gen. 233 (2002) 45.
    138. Reddy B. M., Reddy G. K., Rao K. N., Katta L., J. Mol. Catal. 306 (2009) 62.
    139. Reddy J. S., Sayari A., Catal. Lett. 38 (1996) 219.
    140. Resofszki G., Muhler M., Sprenger S., Wild U., Paál Z., Appl. Catal. A: Gen. 240 (2003) 71.
    141. Risch M., Wolf E. E., Appl. Catal. A: Gen. 206 (2001) 283.
    142. Risch M., Wolf E. E., Catal. Today 62 (2000) 255.
    143. Roldán R., Romero F. J., Jiménez-Sanchidrián C., Marinas J. M., Gómez J. P., Appl. Catal. A: Gen. 288 (2005) 104.
    144. Sahoo S. K., Ray S. S., Singh I. D., Appl. Catal. A: Gen. 278 (2004) 83.
    145. Santiesteban J. G., Calabro D. C., Chang C. D., Vartuli J. C., Fiebig T. J., Bastian R. D., J. Catal. 202 (2001) 25.
    146. Saur O., Bensitel M., Mohammed Saad A. B., Lavalley J. C., Tripp C. P., Morrow B. A., J. Catal. 99 (1986) 104.
    147. Sayari A., Dicko A., J. Catal. 145 (1994) 561.
    148. Sayari A., Yang Y., Song X., J. Catal. 167 (1997) 346.
    149. Shibata K., Kiyoura T., Kitagawa J., Sumiyoshi T., Tanabe K., Bull. Chem. Soc. Jpn. 46 (1973) 2985.
    150. Shishido T., Hattori H., Appl. Catal. A: Gen. 146 (1996) 157.
    151. Signoretto M., Pinna F., Strukul G., Chies P., Cerrato G., Di Ciero S., Morterra C., J. Catal. 167 (1997) 522.
    152. Song X., Sayari A., Catal. Rev. Sci. Eng. 38 (1996) 329.
    153. Spielbauer D., Mekhemer G. A. H., Bosch E., Knözinger H., Catal. Lett. 36 (1996) 59.
    154. Srinivasan R., Sparks D. E., Davis B. H., Catal. Lett. 40 (1996) 167.
    155. Stichert W., Schüth F., Kuba S., Knözinger H., J. Catal. 198 (2001) 277.
    156. Sun Y., Yuan L. N., Wang W., Chen C. L., Xiao F. S., Catal. Lett. 87 (2003) 57.
    157. Sun Y., Walspurger S., Louis B., Sommer J., Appl. Catal. A: Gen. 292 (2005) 200.
    158. Sun Y., Yuan L., Ma S., Han Y., Zhao L., Wang W., Chen C. L., Xiao F. S., Appl. Catal. A: Gen. 268 (2004) 17.
    159. Sun Y., Yue Y. H., Gao Z., Appl. Catal. A: Gen. 161 (1997) 121.
    160. Sun Y., Zhu L., Lu H., Wang R., Lin S., Jiang D., Xiao F. S., Appl. Catal. A: Gen. 237 (2002) 21.
    161. Tanabe K., Itoh M., Morishige K., Hattori H., in: Preparation of Catalysts, (Delmon B., Jacobs P. A., Poncelet G., Ed.) Elsevier, Amsterdam (1976) 65.
    162. Tanabe K., Mater. Chem. Phys. 13 (1985) 347.
    163. Tanabe K., Misono M., Ono Y., Hattori H., Elsevier, Amsterdam (1989).
    164. Tomishige K., Okabe A., Fujimoto K., Appl. Catal. A: Gen. 194 (2000) 383.
    165. Tran M. T., Gnep N. S., Guisnet M., Nascimento P., Catal. Lett. 47 (1997) 57.
    166. Travers C., ENSPM-Formation Industrie (1993).
    167. Trimm D. L., in: Progress in catalyst deactivation, (Figneiredo J. L., Ed.) Martins Nijhoff (1982) 17.
    168. Van Rhijn W. M., Devas D. E., Sels B. F., Bassaert W. D., Jacobs P. A., Chem. Commun. (1998) 317.
    169. Vaudagna S. R., Comelli R. A., Fígoli N. S., React. Kinet. Catal. Lett. 63 (1998) 33.
    170. Vera C. R., Pieck C. L., Shimizu K., Querini C. A., Parera J. M., J. Catal. 187 (1999) 34.
    171. Vera C. R., Pieck C. L., Shimizu K., Querini C. A., Parera J. M., J. Catal. 187 (1999) 39.
    172. Vera C. R., Yori J. C., Pieck C. L., Irusta S., Parera J. M., Appl. Catal. A: Gen. 240 (2003) 161.
    173. Villegas J. I., Kumara N., Heikkilä T., Lehto V. P., Salmi T., Murzin D. Yu., Chem. Eng. J. 120 (2006) 83.
    174. Volkova G. G., Reshetnikov S. I., Shkuratova L. N., Budneva A. A., Paukshtis E. A., Chem. Eng. J. 134 (2007) 106.
    175. Vu T. N., van Gestel J., Gilson J. P., Collet C., Dath J. P., Duchet J. C., J. Catal. 231 (2005) 468.
    176. Wang J. H., Mou C. Y., Appl. Catal. A: Gen. 286 (2005)128.
    177. Wang J. H., Mou C. Y., Micropor. Mesopor. Mater. 110 (2008) 260.
    178. Webb P. A., Orr C., Analytical methods in fine particle technology, Micromertics Instrument Corp. 1997.
    179. Weyda H., Kohler E., Catal. Taday 81 (2003) 51.
    180. Wong S. T., Li T., Cheng S., Lee J. F., Mou C. Y., J. Catal. 215 (2003) 45.
    181. Xia Y., Hua W., Gao Z., Appl. Catal. A: Gen. 185 (1999) 293.
    182. Yaluris G., Larson R. B., Kobe J. M., González M. R., Fogash K. B., Dumesic J. A., J. Catal. 158 (1996) 336.
    183. Yamaguchi T., Jin T., Tanabe K., J. Phys. Chem. 90 (1986) 3148.
    184. Yamaguchi T., Tanabe K., Mater. Chem. Phys. 16 (1986) 67.
    185. Yan Z. F., Qia L., Liu X. M., Song L. H., Song C. M., Ding R. G., Yuan A., Qiao K., J. Chem. Res. June (2005) 394.
    186. Yanagisawa T., Shimizu T., Kuroda K., Kato C., Bull. Chem. Soc. Jpn. 63 (1990) 988.
    187. Yang X., Jentoft F. C., Jentoft R. E., Girgsdies F., Ressler T., Catal. Lett. 81 (2002) 25.
    188. Yang Y. C., Weng H. S., J. Mol. Catal. 304 (2009) 65.
    189. Yashima T., Amhad H., Yamasaki K., Katsuta M., Hara N., J. Catal. 16 (1970) 273.
    190. Yori J. C., D’Amato M. A., Costa G., Parera J. M., J. Catal. 153 (1995) 218.
    191. Yu G. X., Lin D. L., Hu Y., Zhou X. L., Li C. L., Chen L. F., Wang J. A., Catal., Today (2010) Article in press.
    192. Yu G. X., Zhou X. L., Tang C., Li C. L., Wang J. A., Novaro O., Catal. Commun. 9 (2008) 1770.
    193. Yuan Z. Y., Vantomme A., Léonard A., Su B. L., Chem. Commun. (2003) 1558.
    194. Zalewski D. J., Alerasool S., Doolin P. K., Catal. Today 53 (1999) 419.
    195. Zhang X., Wang Y., Xin F., Appl. Catal. A: Gen. 307 (2006) 222.
    196. Zhang W., Smirniotis P. G., J. Catal. 182 (1999) 400.
    197. Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., Science 279 (1998) 548.
    198. Zhao J., Huffman G. P., Davis B. H., Catal. Lett. 24 (1994) 385.
    199. Zhao J., Yue Y., Hua W., He H. Gao Z., Appl. Catal. A: Gen. 336 (2008) 133.
    200. Zhou X. L., Yu G.X., Tang C., Li C. L., Wang J. A., Novaro O., Llanos M. E., Cortés-Jácome Ma. A., Catal. Lett. 124 (2008) 277.

    下載圖示 校內:2013-01-27公開
    校外:2016-01-27公開
    QR CODE