| 研究生: |
崔瑋麟 Tsui, Wei-Lin |
|---|---|
| 論文名稱: |
金屬氫化物顆粒儲氫性能之理論建模與數值模擬 Theoretical Modeling and Numerical Simulation for The Hydrogen Storage Characteristics of Metal Hydride Particles |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 金屬氫化粉末(顆粒) 、吸附 、擴散 、鎂基複合物 |
| 外文關鍵詞: | metal hydride powder / particle, adsorption, diffusion, Mg-based composite |
| 相關次數: | 點閱:90 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著環保意識抬頭以及原油價格的高漲,替代能源的使用與相關技術發展變得刻不容緩。以金屬氫化物做為氫氣能源的吸附和釋放,為目前最安全和最有潛力的方法。本研究以氫能的儲存做為研究主題,我們參考前人研究結果,以巨觀方程式對鎂基金屬氫化物顆粒的儲氫性能,作理論建模和數值模擬。在理論模型中,我們將氫氣的質量擴散係數和表面濃度與體濃度的界面平衡,以Arrhenius方程式表示為溫度的函數,定性說明了壓力-組成-溫度曲線(PCT curve)的趨勢。我們也討論了溫度、壓力和金屬氫化物粒徑等因素對於儲氫性能的影響,並且透過我們的理論模型都得到了合理的預測結果。本研究之成果應可增進吾人對於金屬氫化物吸、釋氫行為的之瞭解與性能預測。
Due to increased environmental consciousness and crude oil price, it has become extremely urgent to exploit alternative energy sources. Among current options, hydrogen energy appears to be a promising alternative energy source, but its storage and transport still present some challenges. Yet using metal hydrides for hydrogen storage appears to be the safest and most promising method. This work therefore is devoted to the theoretical modeling and numerical simulation for the hydrogen storage characteristics (such as the charging/discharging time and hydrogen weight percentage) of Mg-based hydride particles. In our model, the mass diffusion coefficient of hydrogen in the particle and the interface segregation coefficient of hydrogen concentration are related to temperature by Arrhenius-type equations, with the relevant parameters determined by fitting the numerical results of the model with existing experimental data. A systematic parameter study is carried out, and the results offer a qualitative explanation for the form of the pressure-concentration-temperature (PCT) curve of typical metal hydrides. Moreover, the effects of temperature, pressure, and the particle grain size on the hydrogen storage characteristics are examined. Generally speaking, our model offers good predictions, and helps provide some insights into the hydrogen storage characteristics of metal hydrides.
[1] 柯賢文,“未來的氫能經濟”,科學發展,pp.399,68-75,2006
[2] J. L. Schnoor, “A hydrogen-fueled economy,” Environmental Science & Technology, 2004
[3] U.S. Department of Energy, “Office of Basic Energy Sciences, Basic research needs for the hydrogen economy,”http://www. sc.doe.gov/bes/hydrogen.pdf, 2003
[4] U.S. Department of Energy, “Office of Hydrogen, Fuel Cells, and Infrastructure Technologies, Multi-Year Research, Development and Demonstration Plan,”http://www.eere.energy.gov/hydrogenandfuelce lls /mypp/, 2003
[5] M. Campbell, K. Schultz, “Fusion as a source for hydrogen Production,”25th Annual Fusion Power Associates Meeting
[6] M. Momirlan, T. Veziroglu, “Recent directions of world hydrogen production,” Renewable and Sustainable Energy Reviews, pp. 219-231, 1999
[7] L. Becker, “Hydrogen Storage,” Discovery guides, http://ww w.csa.com /discoveryguides/hydrogen/overview.php
[8] J. Zhang, Timothy S. Fisher, “A review of heat transfer issues in hydrogen storage technologies,” J. Heat Transfer, 127, pp. 1391-1399, 2005
[9] T-S Yang, M-L Tsai, D-S Ju, “Effects of exit-pressure variation on the hydrogen supply characteristics of metal hydride reactors, ”To appear in Int J Hydrogen Energy (DOI: 10.1016/j.ijhydene.2010.04.175)
[10] T-S Yang, M-L Tsai, “On the selection of metal-foam volume fraction for hydriding-time minimization of metal hydride reactors, ” Submitted to International Journal of Hydrogen Energy 2010
[11] 朱鼎舜,“釋氫壓力控制對金屬儲氫罐供氫性能的影響”,國立成功大學機械工程所,碩士論文,2008
[12] A. Kurmar Phate, M. Prakash Maiya, S. Srinivasa Murthy, “ Simulation of transient heat and mass transfer during hydrogen sorption in cylindrical metal hydride beds,” Int. J. Hydrogen Energy, 32, pp. 1969-1981, 2007
[13] F. Laurencelle, J. Goyette, “ Simulation of heat transfer in a metal hydride reactor with aluminum foam,” Int. J. Hydrogen Energy, 32, pp. 2957-2964, 2007
[14] F. Yang, X. Meng, J. Deng, Y. Wang, Z. Zhang, “ Identifying heat and mass transfer characteristics of metal hydride reactor during adsorption—Parameter analysis and numerical study,” Int. J. Hydrogen Energy, 33, pp. 1014-1022, 2008
[15] X. Shan, H. Payer, S. Wainright, “Improved durability of hydrogen storage alloys,” J. Alloys and Compounds, 430, pp. 262-268, 2007
[16] S. Hana, X. Zhang, S. Shi, H. Tanaka, N. Kuriyama, N. Taoka, K. Aihara, Q. Xu, “Experimental and theoretical investigation of the cycle durability against CO and degradation mechanism of the LaNi5 hydrogen storage alloy,” J. Alloys and Compounds, 446-447, pp. 208-211, 2007
[17] A. Jemni and S. Ben Nasrallah, “Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor,” Int. J. Hydrogen Energy, vol. 20, No. 1, pp. 43-52, 1995
[18] A. Jemni and S. Ben Nasrallah, “ Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor,” Int. J. Hydrogen Energy, vol. 20, No. 11, pp. 881-891, 1995
[19] A. Jemni and S. Ben Nasrallah, “ Heat and mass transfer models in metal-hydrogen reactor,” Int. J. Hydrogen Energy, Vol. 22, No. 1, pp. 67-76, 1997
[20] A. Jemni, S. Ben Nasrallah, J. Lamloumi, “ Experimental and theoretical study of a metal-hydrogen reactor,” International Journal of Hydrogen Energy, 24, pp. 631-644, 1999
[21] F. Askri, A. Jemni, S. Ben Nasrallah, “Study of two-dimensional and dynamic heat and mass transfer in a metal-hydrogen reactor,” International Journal of Hydrogen Energy, 28, pp. 537-557, 2003
[22] F. Askri, A. Jemni, S. Ben Nasrallah, “Dynamic behavior of metal-hydrogen reactor during hydriding process,” International Journal of Hydrogen Energy, 29, pp. 635-647, 2004
[23] F. Askri, A. Jemni, S. Ben Nasrallah, “Prediction of transient heat and mass transfer in a closed metal-hydrogen reactor,” International Journal of Hydrogen Energy, 29, pp. 195-208, 2004
[24] H. Dhaou, F. Askri, M. Ben Salah, A. Jemni, S. Ben Nasrallah, J. Lamloumi, “ Measurement and modeling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds,” International Journal of Hydrogen Energy, 32, pp. 576-587, 2007
[25] U. Mayer, M. Groll, W. Supper, “ Heat and mass transfer in metal hydride reaction beds: Experimental and theoretical results,” J. the Less-Common Metals, 131, pp. 235-244, 1987
[26] K.C. Chou and K.D. Xu, “A new model for hydriding and dehydriding reactions in intermetallics,” Intermetallics 15, pp. 767–777, 2007
[27] A.S. Fedorov, M.V. Serzhantova and A.A. Kuzubov, “Analysis of hydrogen adsorption in the bulk and on the surface of magnesium nanoparticles,” J Exp Theor Phys 107 (1), pp. 126–132, 2008
[28] GuangxinWu, Jieyu Zhang, YongquanWu, Qian Li , Kuochih Chou, Xinhua Bao, “Adsorption and dissociation of hydrogen on MgO surface: A first-principles study,” Alloys Compd. 480 pp.788–793, 2009
[29] Zhang Jian, Zhou Dian Wu, Liu Jin Shui, “Study on hydrogen atom adsorption and diffusion properties on Mg (0001) surface,” Sci China Ser E-Tech Sci Jul. vol.52 no.7, 1897-1905, 2009
[30] K. Zeng, T. Klassen, W. Oelerich and R. Bormann. Int. J. Hydrogen Energy 24, p. 989, 1999
[31] F. Liu, C.L. Yang, G.C. Yang, J.S. Li, “Deviations from the classical Johnson–Mehl–Avrami kinetics,” Alloys Compd. 460 , pp.326–330, 2008
[32] A. J. Du, Sean C. Smith, and G. Q. Lu, “First-Principle Studies of the Formation and Diffusion of Hydrogen Vacancies in Magnesium Hydride,” J. Phys. Chem. C, 111, 8360-8365, 2007
[33] X. Yao, Z.H. Zhu, H.M. Cheng and G.Q. Lu, “Hydrogen diffusion and effect of grain size on hydrogenation kinetics in magnesium hydrides,” J Mater Res 23 (2) pp. 336–340, 2008
[34] H.G. Shiemel, M.R. Johnson, G.J. Kearley, A.J. Ramirez-Cuesta, J. Huot and F.M. Mulder, “Hydrogen diffusion in magnesium metal (α phase) studied by ab initio computer simulations,” J Alloys Compd 404–406, pp. 235–237, 2005
[35] P. Marty, JF. Fourmigue, P. De Rango, D. Fruchart and J. Charbonnier, “Numerical simulation of heat and mass transfer during the absorption of hydrogen in a magnesium hydride,” Int J Energy Convers Manage 47, pp. 3632–3643, 2006
[36] 陳建瑞,“高儲氫量鎂基複合材料之研究”,國立清華大學材料科學與工程研究所,碩士論文,2004
[37] T. Gramham, Phil. trans. Roy. Soc. London,156 399, 1866
[38] 廖世傑,“儲氫技術及應用簡介”, 工業材料,,Vol.190,,p.139,2002
[39] K.C. Hoffman, W.E. Winsche, R.H. Wiswall, J.J. Reilly, T.V. Sheehan, and C.H. Waide, International Automotive Engineering congress, Detroit 1969
[40] F.A. Kuijpers, “hydrogen Sorpton Properties of The La1-xCaxNi5 and La(Ni1-xCux)5 System,” Philips Res.Rep.28(19731.)
[41] J. Reilly, R.H. Wiswall, Inorg. Chem. 13 218, 1974
[42] 林美姿,“儲氫合金之開發與應用”,材料與社會,Vol.81,p.61,1993
[43] 閻正剛,“能源與材料 – 地球未來最有潛力的新能源:氫能源”,http://www.ch.ntu.edu.tw/~rsliu/pdf97/material/1.pdf
[44] G. Sandrock,“A Panoramic Overview of Hydrogen Storage Alloys From a Gas Reaction Point of View,” J. Alloys Comp., Vol.293-295, p.877, 1999
[45] 周明弘,“儲氫材料Mg2Ni生長動力學之研究”, 國立中央大學材料科學與工程研究所,碩士論文,2007
[46] 劉如熹,“Synthesis and Study of New Materials Using High Pressure”,行政院國家科學委員會專題研究計畫成果報告,台灣大學化學系,2003
[47] M. Jurczyk, L. Smardz, K. Smardz, et al.,“Nanocrystalline LaNi5-type Electrode Materials for Ni-MHx Batteries,” J. Solid State Chem., Vol.171, p.30, 2003
[48] A. Zaluska, L. Zaluski and J.O. Ström-Olsen. J, Nanocrystalline magnesium for hydrogen storage, Alloys Comp. 288 , p.217, 1999
[49] B. Sakintuna, F. Lamari-Darkrim and M. Hirscher,“Metal hydride materials for solid hydrogen storage: A review,” Int J Hydrogen Energy 32 p.1121, 2007
[50] A. Zaluska, L. Zaluski and J.O. Ström-Olsen. J, Nanocrystalline magnesium for hydrogen storage, Alloys Comp. 288 , p.217, 1999
[51] F.D. Manchster, D. Khatamian, Materials Science Forum, 31 261, 1988
[52] L. Schlapbach,“ Hydrogen in intermetallics Compounds Ⅱ,”ch. surface properties and activation. Topics in Applied Physics, 1992
[53] G. Liang, E. Wang, S. Fang, J. Alloys Comp. 223 (1) 111, 1995
[54] A. Krozer, B. Kasemo, J. Phys. Condens. Matter 1 1533, 1989
[55] F. Stillesjo¨, S. O´ lafsson, B. Hjo¨rvasson, E. Karlsson, Zeit. Phys. Chem. 181 353, 1993
[56] B. Vigeholm, K. Jensen, B. Larsen, A. Schroder–Pedersen, J. Less-Common Metals 131 133, 1987
[57] B.Vigeholm, J. Kjoller, B. Larsen, A.S. Pedersen, J. Less-Common Met. 89 135, 1983
[58] C. Stander, Z. Phys. Chem., N.F. 104 229, 1977
[59] M. Stioui, A. Grayevski, A. Resnik, D. Shaltiel, N. Kaplan, J. Less-Common Met. 123 9, 1986
[60] R. Ferro and A. Saccone, Material Science and Technology, Vol.1. stracture of Solid, V. Geroldcedl, VCH, Weinheim, Germany, p.198
[61] C S Sunandana, “ Nanomaterials for hydrogen storage — The van't Hoff connection. ,” Springer India, in co-publication with Indian Academy of Sciences, http://www.springerlink.com/content/1q57p2 50580r8503/
[62] 陳斌豪,lecture 12 thermodynamics md qmd1,工業技術研究院
[63] 陳斌豪,谷傑人 ,“奈米儲氫技術之研發現況與探討(上)(下) ”,工業材料雜誌263期,http://www.materialsnet.com.tw
[64] 林賢科,林中魁,陳錦毅,“機械合金法製備之(Mg2Ni)100-xAgx粉體於不同溫度之儲氫性質研究”,逢甲大學材料科學與工程學系
[65] G. D. Sandrock, “The Metallurgy and Production of Rechargeable Hydrides”, Hydrides for energy storage, Proceedings of the International Symposium, Geilo, Norway, August 14-19, 1977
[66] Q. A. Zhang, Y. Q. Lei, X. G. Yang, Y. L. Du, Q. D. Wang, J. Alloys and Compounds, 305 125, 2000
[67] B. Baranowski, J.Alloy and Compound, 200 87, 1993
[68] T. Saito, K. Suwa, T. Kwamura, J. Alloys and Compounds, 253 682, 1997
[69] J. S. Benjamin, Sci. Amer.234 40, 1976
[70] C. C. Koch, J.D. Whittenbenberger, Elsevier 339-359, 1995
[71] Chan-yeol Seo, Yeong Yoo and Zahir Dehouche, “Hydrogen sorption kinetics of nanocrystalline Mg-based composites using proton conductive ceramic catalysts,” Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005
[72] Dillon, AC , “ Storage of hydrogen in single-walled carbon nanotubes,” Nature, 386 vol.6623, pp.377, 1997
[73] Alan Chambers, Colin Park, R. Terry K. Baker, and Nelly M. Rodriguez , “Hydrogen Storage in Graphite Nanofibers,” J. Phys. Chem. B, 102 (22), pp 4253–4256, 1998
[74] P. Chen, X. Wu, J. Lin, *K. L. Tan, “ High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures ,” Science , Vol. 285. no. 5424, pp. 91 – 93, 2 July 1999
[75] M T Martínez , M A Callejas , A M Benito , M Cochet , T Seeger , A Ansón , J Schreiber , C Gordon , C Marhic , O Chauvet and W K Maser, “ Modifications of single-wall carbon nanotubes upon oxidative purification treatments,” Nanotechnology 14 691, 2003
[76] G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos and J. Samios, Nano Lett 6, p. 1581, 2006
[77] J Lan, D Cheng, D Cao, W Wang, “Silicon Nanotube as a Promising Candidate for Hydrogen Storage: From the First Principle Calculations to Grand Canonical Monte Carlo Simulations,” Phys. Chem. C, 112 (14), pp 5598–5604, 2008
[78] 于振興,王爾德,張文叢,房文斌,梁吉,“鎂基儲氫材料表面能及熱力學性能研究”,功能材料,增刊(35)卷,2004
[79] X. Yao, C.Z. Wu, H. Wang, H.M. Cheng, and G.Q. Lu, “ Effects of carbon nanotubes and metal catalysts on hydrogen storage in magnesium nanocomposites,” J. Nanosci. Nanotechnol. 6, 494, 2006
[80] Tian-Shiang Yang, Chuan-Hsieh Wu, Chia-Feng Yeh, “Analysis of moisture purge in high purity gas distribution systems,” International Journal of Heat and Mass Transfer Volume 49, Issues 9-10, Pages 1753-1759 May, 2006
[81] H. Dhaou, F. Askri, M. Ben Salah, “A. Jemni, S. Ben Nasrallah and J. Lamloumi, Measurement and modeling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds,”Int J Hydrogen Energy 32, pp. 576–587, 2007
[82] J.L. Bobet, E.G. Grigorova, M. Khrussanova, M. Khristov, P. Stefanov, P. Peshev and D. Radev, J. Alloys Compd. 366 , pp. 298–302, 2004
[83] C. Nishimura, M. Komaki and M. Amano, “Hydrogen permeation through magnesium, ” J. Alloys Compd. 293–295 , pp.329–333, 1999
[84] Y. Kojima, Y. Kawai and T. Haga, J. Alloys Compd. 424, pp. 294–298, 2006
[85] J. Bystrzycki, T. Polanski, W. Zieliński, Z.J. Wiśniewski, M. Polanski and W. Mróz et al., Nano-engineering of magnesium hydride for hydrogen storage, Microelectron Eng 86 , pp.889–891, 2009
[86] X.D. Yao, C.Z. Wu, A.J. Du, J. Zou, Z.H. Zhu and P. Wang et al., Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium, J Amer Chem Soc 129 (50), p.15650, 2007
[87] Incropera, Frank P. (EDT), Dewitt, David P., Bergman, Theodore L., Lavine, Adrienne S., John Wiley & Sons Inc, “ Fundamentals of Heat and Mass Transfer,” text book, 2006
[88] 翟峰,趙志遠,趙曉堃,王多,“儲氫材料概述”,北京大學化學與分子工程學院
[89] Yanfang Li, Ping Zhang, Bo Sun, Yu Yang, and Yinghui Wei, “ Atomic hydrogen adsorption and incipient hydrogenation of the Mg (0001) surface: A density-functional theory study,” The Journal of Chemical Physics 131, 034706, 2009
[90] A.J. Du, S.C. Smith and G.Q. Lu, “First-principle studies of the formation and diffusion of hydrogen vacancies in magnesium hydride, ” J Phys Chem C 111, pp.8360–8365, 2007