| 研究生: |
陳宜琪 Chen, Yi-Chi |
|---|---|
| 論文名稱: |
利用鎂同位素探討米羅斯島海底熱液系統的水岩反應過程 Water/rock interaction inferred from Mg isotopes in Milos hydrothermal system, Greece |
| 指導教授: |
游鎮烽
You, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 鎂同位素 、熱液 、水岩反應 |
| 外文關鍵詞: | Mg isotopes, Hydrothermal vent fluids, Water/rock interactions |
| 相關次數: | 點閱:120 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海底熱液循環系統為影響海水化學成分的重要機制。尤其在低溫蝕變過程中次生礦物的形成將顯著改變熱液流體化學組成。在低溫蝕變過程中鎂同位素會產生顯著同位素分化,其同位素比值有潛力作為指示低溫熱液系統水岩反應程度的指標。為理解不同型態熱液循環系統的水岩反應程度,本研究樣品取自希臘愛琴海域米羅斯島的熱液湧泉系統。米羅斯島的地質以中性火成岩為主,其海底熱液系統包含兩種不同的流體循環模式。其一為深度約0.5公里的淺部循環,主要因海水下滲循環後湧出形成;另一為深度約1-2公里的深部循環,其流體經過次臨界相分離作用,分化為蒸氣相與鹵水相後,沿著岩層裂隙往上流動而湧出。本研究探討米羅斯島不同熱液循環系統的化學組成與鎂同位素比值變化,以探討可能水岩反應機制及過程。我們使用感應耦合電漿光譜儀(ICP-OES)與感應耦合電漿質譜儀(ICP-MS)測定樣本的主要元素濃度和微量元素濃度;使用Wombacher et al. (2009)純化方法,最後利用多接收器感應耦合電漿質譜儀(MC-ICP-MS)精確測量鎂同位素比值。
結果顯示,除深部循環的蒸氣相顯示出與海鹽水流體混合趨勢有較大偏差,鎂濃度和主要元素呈負相關,藉由元素濃度變化的特性,探討端成分的來源。整體熱液系統δ26Mg變化約為0.66‰。相分離作用分離出的蒸氣相δ26Mg介於-0.52~-0.63‰;鹵水相δ26Mg介於-0.65~-1.00‰,提供鎂同位素在相分離作用下可能的分化機制以及混和趨勢。淺部循環似海水δ26Mg介於-0.64~-1.18‰,大部分樣品符合雷利分化α=1.00020,顯示在開放系統重同位素有利於進入矽酸鹽固相。藉由比較δ26Mg與主要元素變化,搭配文獻鋰、硼同位素數據,歸納出米羅斯島淺水熱液系統模擬圖。
The input of submarine hydrothermal vent fluids is an important factor to influence the compositions of seawater, particularly during secondary minerals formation at low-temperatures. During water/rock alteration, exchange of Mg isotopes take place and to cause isotopic fractionation in vent fluids. The study of δ26Mg in vent fluids, therefore, has became a sensitive tracer for tracing water/rock interactions in hydrothermal system. To assess the degree of water/rock interactions under different types of hydrothermal circulations, this study analyzes the δ26Mg in vent fluids, which collected from a shallow submerged hydrothermal system in Milos Island.
The aims of this study are (1) to investigate the chemical compositions and Mg isotopes in different hydrothermal vent fluids in Milos; and (2) to explore their possible water/rock interaction mechanisms/processes involved. Major and trace elements were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES) and/or inductively coupled plasma mass spectrometry (ICP-MS). Sample solutions were treated with the chemical separation processes for Mg isotopic measurement, which were analyzed using multi-collector inductively coupled plasma mass-spectrometer (MC-ICP-MS).
The δ26Mg in Milos hydrothermal fluid is varied of 0.66‰, the seawater-like ranges from -0.64 to -1.18‰, and most data for seawater-like fall on a trend line of Rayleigh fractionation, with an α about 1.00020 ± 0.00011, which may represent chlorite mineral formation. The δ26Mg of the Cave fluids range from -0.52 to -0.63‰; the δ26Mg of Submarine-brine range from -0.65 to -1.00‰, which provide possible mechanisms for explaining Mg isotopic fractionation under phase separation. By comparing the available major/trace elemental concentrations and several isotopic systems (Li, B, and Mg) in literature, this study explores possible mechanisms that affecting submarine hydrothermal circulation in Milos.
Alt, J. C. (1995) Subseafloor processes in mid-ocean ridge hydrothennal systems. Washington DC American Geophysical Union Geophysical Monograph Series. 91, 85-114.
An, Y., Wu, F., Xiang, Y., Nan, X., Yu, X., Yang, J., Yu, H., Xie, L. and Huang, F. (2014) High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS. Chemical Geology. 390, 9-21.
Beaulieu, S. E., Baker, E. T., German, C. R. and Maffei, A. (2013) An authoritative global database for active submarine hydrothermal vent fields. Geochemistry, Geophysics, Geosystems. 14, 4892-4905.
Bischoff, J. L. and Dickson, F. W. (1975) Seawater-basalt interaction at 200°C and 500 bars: Implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry. Earth and Planetary Science Letters. 25, 385-397.
Bouman, C., Deerberg, M. and Schwieters, J. (2021) NEPTUNE and NEPTUNE Plus : Breakthrough in Sensitivity using a Large Interface Pump and New Sample Cone.
Briqueu, L., Javoy, M., Lancelot, J. R. and Tatsumoto, M. (1986) Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini—geodynamic implications. Earth and Planetary Science Letters. 80, 41-54.
Caballero, E., Reyes, E., Delgado, A., Huertas, F. and Linares, J. (1992) The formation of bentonite: mass balance effects. Applied Clay Science. 6, 265-276.
Carpenter, J. H. and Manella, M. E. (1973) Magnesium to chlorinity ratios in seawater. Journal of Geophysical Research (1896-1977). 78, 3621-3626.
Christidis, G. E. (2001) Geochemical correlation of bentonites from Milos Island, Aegean, Greece. Clay Minerals - CLAY MINER. 36, 295-306.
Christidis, G. E. and Huff, W. D. (2009) Geological aspects and genesis of bentonites. Elements. 5, 93-98.
D'Amore, F. and Panichi, C. (1985) Geochemistry in geothermal exploration. International Journal of Energy Research. 9, 277-298.
Damm, K. L. V. and Edmond, J. M. (1984) Reverse weathering in the closed-basin lakes of the Ethiopian Rift.
Dando, P. R., Hughes, J. A., Leahy, Y., Niven, S. J., Taylor, L. J. and Smith, C. (1995) Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Continental Shelf Research. 15, 913-929.
Davis, A. M., Richter, F. M., Mendybaev, R. A., Janney, P. E., Wadhwa, M. and McKeegan, K. D. (2015) Isotopic mass fractionation laws for magnesium and their effects on 26Al–26Mg systematics in solar system materials. Geochimica et Cosmochimica Acta. 158, 245-261.
Decher, A., Bechtel, A., Echle, W., Friedrich, G. and Hoernes, S. (1996) Stable isotope geochemistry of bentonites from the island of Milos (Greece). Chemical Geology. 129, 101-113.
Diehl, A. and Bach, W. (2020) MARHYS (MARine HYdrothermal Solutions) Database: A Global Compilation of Marine Hydrothermal Vent Fluid, End Member, and Seawater Compositions. Geochemistry, Geophysics, Geosystems. 21, e2020GC009385.
Eom, J., Yoshimura, T., Araoka, D., Gamo, T. and Kawahata, H. (2020) Magnesium isotopic composition of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific. Chemical Geology. 551, 119767.
Fei, G. C., Zhou, Y., Deng, Y., Chen, X., Wen, C. Q., Yu, Q., Ding, F., Zhou, X. and Huo, Y. (2018) Geology and Isotope Geochemistry of the Dongzhongla Pb–Zn Deposit in Tibet: Implications for the Origin of the Ore-Forming Fluids and Storage Condition of Certain Metals. Resource Geology. 68, 227-243.
Ferguson, J. E., Henderson, G. M., Kucera, M. and Rickaby, R. E. M. (2008) Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient. Earth and Planetary Science Letters. 265, 153-166.
Fytikas, M., Innocenti, F., Kolios, N., Manetti, P., Mazzuoli, R., Poli, G., Rita, F. and Villari, L. (1986) Volcanology and petrology of volcanic products from the island of Milos and neighbouring islets. Journal of Volcanology and Geothermal Research. 28, 297-317.
Gilhooly, W. P., Fike, D. A., Druschel, G. K., Kafantaris, F. C. A., Price, R. E. and Amend, J. P. (2014) Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece. Geochem. Trans. 15, 19.
Grim, R. E. and Guven, N. (2011) Bentonites: geology, mineralogy, properties and uses. Elsevier
Guo, B., Zhu, X., Dong, A., Yan, B., Shi, G. and Zhao, Z. (2019) Mg isotopic systematics and geochemical applications: A critical review. Journal of Asian Earth Sciences. 176, 368-385.
Hannington, M. (2014) Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings. Economic Geology. 109, 2079-2101.
Hu, Y. and Teng, F.-Z. (2019) Optimization of analytical conditions for precise and accurate isotope analyses of Li, Mg, Fe, Cu, and Zn by MC-ICPMS. J. Anal. At. Spectrom. 34, 338-346.
Huang, K.-J., Teng, F.-Z., Plank, T., Staudigel, H., Hu, Y. and Bao, Z.-Y. (2018) Magnesium isotopic composition of altered oceanic crust and the global Mg cycle. Geochimica et Cosmochimica Acta. 238.
Köster, M. H., Williams, L. B., Kudejova, P. and Gilg, H. A. (2019) The boron isotope geochemistry of smectites from sodium, magnesium and calcium bentonite deposits. Chemical Geology. 510, 166-187.
Khimasia, A., Renshaw, C. E., Price, R. E. and Pichler, T. (2021) Hydrothermal flux and porewater geochemistry in Paleochori Bay, Milos, Greece. Chemical Geology. 571, 120188.
Lackschewitz, K. S., Singer, A., Botz, R., Garbe-Schönberg, D., Stoffers, P. and Horz, K. (2000) Formation and Transformation of Clay Minerals in the Hydrothermal Deposits of Middle Valley, Juan de Fuca Ridge, ODP Leg 169. Economic Geology. 95, 361-389.
Leeman, W. P., Tonarini, S., Pennisi, M. and Ferrara, G. (2005) Boron isotopic variations in fumarolic condensates and thermal waters from Vulcano Island, Italy: Implications for evolution of volcanic fluids. Geochimica et Cosmochimica Acta. 69, 143-163.
Li, W., Beard, B. L., Li, C. and Johnson, C. M. (2014) Magnesium isotope fractionation between brucite [Mg(OH)2] and Mg aqueous species: Implications for silicate weathering and biogeochemical processes. Earth and Planetary Science Letters. 394, 82-93.
Liakopoulos, A. and Boulegue, J. (1987) A geochemical model for the origin of geothermal fluids and the genesis of mineral deposits in Milos island. Terra Cognita. 7, 228.
Liakopoulos, A., Glasby, G. P., Papavassiliou, K. and Boulegue, J. (2001) Nature and origin of the Vani manganese deposit, Milos, Greece: An overview. Ore Geology Reviews. 18, 181-209.
Ling, M.-X., Sedaghatpour, F., Teng, F.-Z., Hays, P. D., Strauss, J. and Sun, W. (2011) Homogeneous magnesium isotopic composition of seawater: an excellent geostandard for Mg isotope analysis. Rapid Communications in Mass Spectrometry. 25, 2828-2836.
Lou, U.-L., You, C.-F., Wu, S.-F. and Chung, C.-H. (2014) Lithium isotope as a proxy for water/rock interaction between hydrothermal fluids and oceanic crust at Milos, Greece. EGU General Assembly Conference Abstracts.
Megalovasilis, P. (2014) Partition Geochemistry of Hydrothermal Precipitates from Submarine Hydrothermal Fields in the Hellenic Volcanic Island Arc. Geochemistry International. 52.
Megalovasilis, P. (2020) Hydrothermal Fluid Particle Geochemistry of Submarine Vents in Kos Island, Aegean Sea East Mediterranean. Geochemistry International. 58, 574 - 597.
Miyoshi, Y., Ishibashi, J.-i., Faure, K., Maeto, K., Matsukura, S., Omura, A., Shimada, K., Sato, H., Sakamoto, T., Uehara, S., Chiba, H. and Yamanaka, T. (2013) Mg-rich clay mineral formation associated with marine shallow-water hydrothermal activity in an arc volcanic caldera setting. Chemical Geology. 355, 28-44.
Nessim, R. B., Tadros, H. R. Z., Abou Taleb, A. E. A. and Moawad, M. N. (2015) Chemistry of the Egyptian Mediterranean coastal waters. The Egyptian Journal of Aquatic Research. 41, 1-10.
Ninkovich, D. and D. Hays, J. (1972) Mediterranean island arcs and origin of high potash volcanoes. Earth and Planetary Science Letters. 16, 331-345.
Parkhurst, D. L. and Appelo, C. (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations.
Pichler, T. (2005) Stable and radiogenic isotopes as tracers for the origin, mixing and subsurface history of fluids in submarine shallow-water hydrothermal systems. Journal of Volcanology and Geothermal Research - J VOLCANOL GEOTHERM RES. 139.
Pistiner, J. S. and Henderson, G. M. (2003) Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters. 214, 327-339.
Pogge von Strandmann, P. A., Burton, K. W., Opfergelt, S., Eiríksdóttir, E. S., Murphy, M. J., Einarsson, A. and Gislason, S. R. (2020) Hydrothermal and cold spring water and primary productivity effects on magnesium isotopes: Lake Myvatn, Iceland. Frontiers in earth science. 8, 109.
Price, R. E. and Giovannelli, D. (2017) A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents.
Price, R. E., LaRowe, D. E., Italiano, F., Savov, I., Pichler, T. and Amend, J. P. (2015) Subsurface hydrothermal processes and the bioenergetics of chemolithoautotrophy at the shallow-sea vents off Panarea Island (Italy). Chemical Geology. 407-408, 21-45.
Reeves, E. P., Seewald, J. S., Saccocia, P., Bach, W., Craddock, P. R., Shanks, W. C., Sylva, S. P., Walsh, E., Pichler, T. and Rosner, M. (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochimica et Cosmochimica Acta. 75, 1088-1123.
Released, S. I. (2008) SPSS statistics for windows, version 17.0. Chicago: SPSS Inc.
Rosman, K. J. R. and Taylor, P. D. P. (1998) Isotopic compositions of the elements 1997 (Technical Report). Pure and Applied Chemistry. 70, 217.
Royden, L. H. and Papanikolaou, D. J. (2011) Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochemistry, Geophysics, Geosystems. 12.
Ryu, J.-S., Vigier, N., Decarreau, A., Lee, S.-W., Lee, K.-S., Song, H. and Petit, S. (2016) Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation. Chemical Geology. 445, 135-145.
Sánchez-Avila, J., Meyer, J. and Lacorte, S. (2010) Spatial distribution and sources of perfluorochemicals in the NW Mediterranean coastal waters (Catalonia, Spain). Environmental Pollution. 158, 2833-2840.
Tang, Y.-J., Zhang, H. and Ying, J. (2007) Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review. 49, 374-388.
Teague, J., Miles, J., Connor, D., Priest, E., Scott, T., Naden, J. and Nomikou, P. (2017) Exploring Offshore Hydrothermal Venting Using Low-Cost ROV and Photogrammetric Techniques. A Case Study from Milos Island, Greece.
Teng, F.-Z., Hu, Y. and Chauvel, C. (2016) Magnesium isotope geochemistry in arc volcanism. Proceedings of the National Academy of Sciences. 113, 7082-7087.
Teng, F.-Z., Li, W.-Y., Ke, S., Marty, B., Dauphas, N., Huang, S., Wu, F.-Y. and Pourmand, A. (2010) Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta. 74, 4150-4166.
Teng, F.-Z., Li, W.-Y., Ke, S., Yang, W., Liu, S.-A., Sedaghatpour, F., Wang, S.-J., Huang, K.-J., Hu, Y., Ling, M.-X., Xiao, Y., Liu, X.-M., Li, X.-W., Gu, H.-O., Sio, C. K., Wallace, D. A., Su, B.-X., Zhao, L., Chamberlin, J., Harrington, M. and Brewer, A. (2015) Magnesium Isotopic Compositions of International Geological Reference Materials. Geostandards and Geoanalytical Research. 39, 329-339.
Teng, F.-Z., Li, W.-Y., Rudnick, R. L. and Gardner, L. R. (2010) Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth and Planetary Science Letters. 300, 63-71.
Tipper, E. T., Galy, A. and Bickle, M. J. (2006) Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle. Earth and Planetary Science Letters. 247, 267-279.
Tivey, M. K. (2007) Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits. Oceanography. 20, 50-65.
Valsami-Jones, E., Baltatzis, E., Bailey, E. H., Boyce, A. J., Alexander, J. L., Magganas, A., Anderson, L., Waldron, S. and Ragnarsdottir, K. V. (2005) The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc. Journal of Volcanology and Geothermal Research. 148, 130-151.
Varnavas, S. P. and Cronan, D. S. (2005) Submarine hydrothermal activity off Santorini and Milos in the Central Hellenic Volcanic Arc: A synthesis. Chemical Geology. 224, 40-54.
Voigt, M., Pearce, C. R., Fries, D. M., Baldermann, A. and Oelkers, E. H. (2020) Magnesium isotope fractionation during hydrothermal seawater-basalt interaction. Geochimica et Cosmochimica Acta. 272, 21-35.
Voudouris, P., Kati, M., Magganas, A., Keith, M., Valsami-Jones, E., Haase, K., Klemd, R. and Nestmeyer, M. (2021) Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece. Minerals. 11, 14.
Wilckens, F. K., Reeves, E. P., Bach, W., Seewald, J. S. and Kasemann, S. A. (2019) Application of B, Mg, Li, and Sr Isotopes in Acid-Sulfate Vent Fluids and Volcanic Rocks as Tracers for Fluid-Rock Interaction in Back-Arc Hydrothermal Systems. Geochemistry, Geophysics, Geosystems. 20, 5849-5866.
Wimpenny, J., Colla, C. A., Yin, Q.-Z., Rustad, J. R. and Casey, W. H. (2014) Investigating the behaviour of Mg isotopes during the formation of clay minerals. Geochimica et Cosmochimica Acta. 128, 178-194.
Wombacher, F., Eisenhauer, A., Heuser, A. and Weyer, S. (2009) Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC-ICP-MS and double-spike TIMS. J. Anal. At. Spectrom. 24, 627-636.
Wu, S.-F., You, C.-F., Lin, Y.-P., Valsami-Jones, E. and Baltatzis, E. (2016) New boron isotopic evidence for sedimentary and magmatic fluid influence in the shallow hydrothermal vent system of Milos Island (Aegean Sea, Greece). Journal of Volcanology and Geothermal Research. 310, 58-71.
Wu, S.-F., You, C.-F., Valsami-Jones, E., Baltatzis, E. and Shen, M.-L. (2012) Br/Cl and I/Cl systematics in the shallow-water hydrothermal system at Milos Island, Hellenic Arc. Marine Chemistry. 140-141, 33-43.
Wu, S. F., You, C. F., Wang, B. S., Valsami-Jones, E. and Baltatzis, E. (2011) Two-cells phase separation in shallow submarine hydrothermal system at Milos Island, Greece: Boron isotopic evidence. Geophys. Res. Lett. 38, 5.
Young, E. and Galy, A. (2004) The Isotope Geochemistry and Cosmochemistry of Magnesium. Reviews in Mineralogy and Geochemistry. 55, 197-230.
Zhang, X., Zhai, S., Yu, Z., Wang, S. and Cai, Z. (2019) Review on magmatic contribution to seafloor hydrothermal systems.
台灣質譜學會( 2015 )。質譜分析技術原理與應用。新北市:作者。
石学法、李兵、鄢全树、叶俊(2016)。西太平洋岛弧-弧后盆地热液活动及成矿作用。
柯珊、劉盛遨、李王曄、楊蔚、滕方振(2011)。鎂同位素地球化學研究新進展及其應用。岩石學報,383-397。