| 研究生: |
蔡宇傑 Tsai, Yu-Chieh |
|---|---|
| 論文名稱: |
回收廢鋰離子電池之高值正極原料 Recycling of High-valuable Cathodic Raw Materials from Spent Lithium-ion Batteries |
| 指導教授: |
王鴻博
Wang, Hong-Paul |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 鋰離子電池 、正極原料 、鈷 、鋰 、自動拆解 、濕法冶金 、鋰離子篩 、電容去離子 |
| 外文關鍵詞: | Lithium-ion battery, cathode raw materials, cobalt, lithium, automatic disassembling, hydrometallurgy, lithium ion-sieve, capacitive deionization |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池(LIB)具高功率,容量及低記憶效應的被廣泛應用於便攜式電子設備與電動載具。電池中含有鋰、鈷、鎳與錳等貴重金屬,尤其是鈷成本為高。臺灣鋰電池2021年回收量為600噸,預計在2025年達到1100噸。不過目前國內的電池回收廠無法回收電池原材料,絕大部分LIB及其原料皆境外處理。因此,開發有效的鋰電池回收工藝非常重要。本研究開發自動化機械拆解、綠色溶劑浸出、離子篩(IS)與電容去離子(CDI)的可行性研究,從廢鋰離子電池回收高價正極原材料。自動拆解過程的概念設計旨在提高目標材料的分離與回收效率並降低運營成本。電池的剩餘電力可以在乾式放電步驟中回收。雙向滾輪與感應夾具用於展開LIB果凍卷。自走夾具與刮刀用於分離沾黏於陽極及隔膜兩側的電極材料。收集後的正極材料使用檸檬酸、過氧化氫等綠色溶劑浸出,並獲得鋰、鈷、鎳及錳的活化能分別為12.8、40.6、53.8與4.89 kJ/mol有利於未來工程放大應用。錳可以在最初的20分鐘內選擇性浸出(>90%),簡化後續IS及CDI的進一步處理。HTi2O4用於從滲濾液中選擇性捕獲Li+ (4.07 mg/g),並由競爭吸附數據計算鋰,鈷及鎳的分配係數 (Kd) 分別為1.16、0.003與0.001 mg/mL。CDI在低電壓下(0.6-1 V)富集Co2+與Ni2+,吸附容量可以在30分鐘內分別達到1.45 與1.42 mg/g。這項研究顯示以循環經濟方式從廢棄LIB回收正極原料的工程可行性。
Lithium-ion batteries (LIBs) with high power efficiency and low memory effect have been widely used in portable electronic devices and electric vehicles. A LIB contains lithium, cobalt, nickel, and manganese, especially the relatively high cost of cobalt that needs to be recycled. The lithium battery recycling amount in Taiwan is 600 tons in 2021, which is expected to be 1,100 tons in 2025. Nevertheless, currently spent LIB recycling plants are not available for recycling of LIB raw materials. Therefore, it is of great importance to develop an effective spent LIB recycling process. A feasibility study for the integrated automatic mechanical disabling, green solvent leaching, ion-sieve and capacitive deionization (CDI) was carried out for recycling of valuable cathode raw materials from spent LIBs. The automatic disassembly process was conceptually designed to ensure the expected separation and recycling efficiency of the target material and to reduce operating costs. Residual electricity of spent LIBs could be recovered in the dry-discharge step without wastewater to be treated. Two-way rollers and induction clamps were designed to unroll the jelly roll. Self-moving clips and scrapers were used to separate anode and separator coating materials that stick to both sides. The separated cathode raw materials were leached by green solvents such as citric acid and hydrogen peroxide. The leaching kinetics were controlled by reaction with activation energies of 12.8, 40.6, 53.8 and 4.89 kJ/mol for lithium, cobalt, nickel, and manganese, respectively, which was very useful for engineering scale-up. Manganese could be selectively leached out (>90%) from the ground cathode powders in the first 20 min, providing a simplified way for further processing by IS and CDI. HTi2O4 ion sieve was dispersed on activated carbon to selective capture of Li+ (4.07 mg/g) from the leachate. Their partition coefficients (Kd) for lithium, cobalt, and nickel were 1.16, 0.003, and 0.001 mg/ml, respectively. During CDI, Co2+ and Ni2+ could be enriched under 0.6-1 V, for example, their adsorption capacities could reach 1.45, and 1.42 mg/g, respectively in 30 min under 1 V. This work demonstrates the engineering feasible for recycling of cathode raw materials from spent LIBs in a circular-economy approach.
Aboelazm, E. A. A., Ali, G. A. M., Algarni, H., Yin, H., Zhong, Y. L., & Chong, K. F. (2018). Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode. The Journal of Physical Chemistry C, 122(23), 12200-12206.
Aboelazm, E. A. A., Mohamed, N., Ali, G. A. M., Makhlouf, A. S. H., & Chong, K. F. (2021). Recycling of Cobalt Oxides Electrodes from Spent Lithium-Ion Batteries by Electrochemical Method. In A. S. H. Makhlouf & G. A. M. Ali (Eds.), Waste Recycling Technologies for Nanomaterials Manufacturing (pp. 91-123). Cham: Springer International Publishing.
Barbieri, E. M. S., Lima, E. P. C., Cantarino, S. J., Lelis, M. F. F., & Freitas, M. B. J. G. (2014). Recycling of spent ion-lithium batteries as cobalt hydroxide, and cobalt oxide films formed under a conductive glass substrate, and their electrochemical properties. Journal of Power Sources, 269, 158-163.
Brandt, K. (1994). Historical development of secondary lithium batteries. Solid State Ionics, 69(3), 173-183.
Bruce, P. G., Freunberger, S. A., Hardwick, L. J., & Tarascon, J.-M. (2012). Li–O2 and Li–S batteries with high energy storage. Nature Materials, 11(1), 19-29.
Cao, N., Zhang, Y., Chen, L., Chu, W., Huang, Y., Jia, Y., & Wang, M. (2021). An innovative approach to recover anode from spent lithium-ion battery. Journal of Power Sources, 483, 229163.
Cao, R., Xu, W., Lv, D., Xiao, J., & Zhang, J.-G. (2015). Anodes for Rechargeable Lithium-Sulfur Batteries. Advanced Energy Materials, 5(16), 1402273.
Chen, F., Huang, Y., Guo, L., Sun, L., Wang, Y., & Yang, H. Y. (2017). Dual-ions electrochemical deionization: a desalination generator. Energy & Environmental Science, 10(10), 2081-2089.
Chen, M., Wu, R., Ju, S., Zhang, X., Xue, F., & Xing, W. (2018a). Improved performance of Al-doped LiMn2O4 ion-sieves for Li+ adsorption. Microporous and Mesoporous Materials, 261, 29-34.
Chen, X., Cao, L., Kang, D., Li, J., Zhou, T., & Ma, H. (2018b). Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium. Waste Management, 80, 198-210.
Chen, X., Guo, C., Ma, H., Li, J., Zhou, T., Cao, L., & Kang, D. (2018c). Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries. Waste Management, 75, 459-468.
Chen, X., Kang, D., Cao, L., Li, J., Zhou, T., & Ma, H. (2019). Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step. Separation and Purification Technology, 210, 690-697.
Chen, X., Luo, C., Zhang, J., Kong, J., & Zhou, T. (2015). Sustainable Recovery of Metals from Spent Lithium-Ion Batteries: A Green Process. ACS Sustainable Chemistry & Engineering, 3(12), 3104-3113.
Chen, X., Shen, W., Vo, T. T., Cao, Z., & Kapoor, A. (2012, 12-14 Dec. 2012). An overview of lithium-ion batteries for electric vehicles. Paper presented at the 2012 10th International Power & Energy Conference (IPEC).
Chen, Y., Li, H., Wang, Z., Tao, T., & Hu, C. (2011). Photoproducts of tetracycline and oxytetracycline involving self-sensitized oxidation in aqueous solutions: Effects of Ca2+ and Mg2+. Journal of Environmental Sciences, 23(10), 1634-1639.
Chitrakar, R., Makita, Y., Ooi, K., & Sonoda, A. (2014). Lithium recovery from salt lake brine by H 2 TiO 3. Dalton Transactions, 43(23), 8933-8939.
Cho, Y., Yoo, C.-Y., Lee, S. W., Yoon, H., Lee, K. S., Yang, S., & Kim, D. K. (2019). Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes. Water Research, 151, 252-259.
Choi, J., & Kim, P. J. (2022). A roadmap of battery separator development: Past and future. Current Opinion in Electrochemistry, 31, 100858.
Desai, D., Beh, E. S., Sahu, S., Vedharathinam, V., van Overmeere, Q., de Lannoy, C. F., . . . Rivest, J. B. (2018). Electrochemical Desalination of Seawater and Hypersaline Brines with Coupled Electricity Storage. ACS Energy Letters, 3(2), 375-379.
Diekmann, J., Hanisch, C., Loellhoeffel, T., Schälicke, G., & Kwade, A. (2016). Ecologically friendly recycling of lithium-ion batteries-the lithorec process. ECS Transactions, 73(1), 1.
Fan, C.-S., Tseng, S.-C., Li, K.-C., & Hou, C.-H. (2016). Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization. Journal of Hazardous Materials, 312, 208-215.
Fan, E., Shi, P., Zhang, X., Lin, J., Wu, F., Li, L., & Chen, R. (2020). Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries. Waste Management, 114, 166-173.
Freitas, M. B. J. G., Celante, V. G., & Pietre, M. K. (2010). Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. Journal of Power Sources, 195(10), 3309-3315.
Fu, Y., He, Y., Chen, H., Ye, C., Lu, Q., Li, R., . . . Wang, J. (2019). Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant. Journal of Industrial and Engineering Chemistry, 79, 154-162.
Fu, Y., He, Y., Yang, Y., Qu, L., Li, J., & Zhou, R. (2020). Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries. Journal of Alloys and Compounds, 832, 154920.
Gallo, A. B., Simões-Moreira, J. R., Costa, H. K. M., Santos, M. M., & Moutinho dos Santos, E. (2016). Energy storage in the energy transition context: A technology review. Renewable and Sustainable Energy Reviews, 65, 800-822.
Gan, Z., Hu, G., Peng, Z., Cao, Y., Tong, H., & Du, K. (2019). Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB. Applied Surface Science, 481, 1228-1238.
Gao, A., Sun, Z., Li, S., Hou, X., Li, H., Wu, Q., & Xi, X. (2018). The mechanism of manganese dissolution on Li1.6Mn1.6O4 ion sieves with HCl. Dalton Transactions, 47(11), 3864-3871.
Gendel, Y., Rommerskirchen, A. K. E., David, O., & Wessling, M. (2014). Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochemistry Communications, 46, 152-156.
Golmohammadzadeh, R., Faraji, F., & Rashchi, F. (2018). Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling, 136, 418-435.
Golmohammadzadeh, R., Rashchi, F., & Vahidi, E. (2017). Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects. Waste Management, 64, 244-254.
Golubkov, A. W., Fuchs, D., Wagner, J., Wiltsche, H., Stangl, C., Fauler, G., . . . Hacker, V. (2014). Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Advances, 4(7), 3633-3642.
Gomez-Martin, A., Reissig, F., Frankenstein, L., Heidbüchel, M., Winter, M., Placke, T., & Schmuch, R. (2022). Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries. Advanced Energy Materials, n/a(n/a), 2103045.
Grandjean, T. R. B., Groenewald, J., & Marco, J. (2019). The experimental evaluation of lithium ion batteries after flash cryogenic freezing. Journal of Energy Storage, 21, 202-215.
Guney, M. S., & Tepe, Y. (2017). Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews, 75, 1187-1197.
Han, B., Anwar Ui Haq, R., & Louhi-Kultanen, M. (2020). Lithium carbonate precipitation by homogeneous and heterogeneous reactive crystallization. Hydrometallurgy, 195, 105386.
Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., . . . Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature, 575(7781), 75-86.
He, L.-P., Sun, S.-Y., Song, X.-F., & Yu, J.-G. (2015). Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management, 46, 523-528.
Heiskanen, S. K., Kim, J., & Lucht, B. L. (2019). Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule, 3(10), 2322-2333.
Hu, J., Zhang, J., Li, H., Chen, Y., & Wang, C. (2017). A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Power Sources, 351, 192-199.
Islam, M. S., Driscoll, D. J., Fisher, C. A. J., & Slater, P. R. (2005). Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material. Chemistry of Materials, 17(20), 5085-5092.
Jaoude, M. A., Alhseinat, E., Polychronopoulou, K., Bharath, G., Darawsheh, I. F. F., Anwer, S., . . . Banat, F. (2020). Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochimica Acta, 330, 135202.
Jasinski, R., Burrows, B., & Malachesky, P. (1967). HIGH ENERGY BATTERIES. Retrieved from
Jiang, F., Chen, Y., Ju, S., Zhu, Q., Zhang, L., Peng, J., . . . Miller, J. D. (2018). Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries. Ultrasonics Sonochemistry, 48, 88-95.
Jin, S., Mu, D., Lu, Z., Li, R., Liu, Z., Wang, Y., . . . Dai, C. (2022). A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. Journal of Cleaner Production, 340, 130535.
Joulié, M., Laucournet, R., & Billy, E. (2014). Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. Journal of Power Sources, 247, 551-555.
Kalfa, A., Shapira, B., Shopin, A., Cohen, I., Avraham, E., & Aurbach, D. (2020). Capacitive deionization for wastewater treatment: Opportunities and challenges. Chemosphere, 241, 125003.
Kikuchi, Y., Suwa, I., Heiho, A., Dou, Y., Lim, S., Namihira, T., . . . Tokoro, C. (2021). Separation of cathode particles and aluminum current foil in lithium-ion battery by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on experimental data. Waste Management, 132, 86-95.
King, S., & Boxall, N. J. (2019). Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry. Journal of Cleaner Production, 215, 1279-1287.
Léval, A., Agapova, A., Steinlechner, C., Alberico, E., Junge, H., & Beller, M. (2020). Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: investigation and mechanistic insights. Green Chemistry, 22(3), 913-920.
Lee, J.-Y., Seo, S.-J., Yun, S.-H., & Moon, S.-H. (2011). Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water Research, 45(17), 5375-5380.
Lee, J., Kim, S., Kim, C., & Yoon, J. (2014). Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy & Environmental Science, 7(11), 3683-3689.
Leong, Z. Y., & Yang, H. Y. (2020). Capacitive Deionization of Divalent Cations for Water Softening Using Functionalized Carbon Electrodes. ACS Omega, 5(5), 2097-2106.
Li, H., Zhao, Z., Xiouras, C., Stefanidis, G. D., Li, X., & Gao, X. (2019). Fundamentals and applications of microwave heating to chemicals separation processes. Renewable and Sustainable Energy Reviews, 114, 109316.
Li, L., Fan, E., Guan, Y., Zhang, X., Xue, Q., Wei, L., . . . Chen, R. (2017). Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustainable Chemistry & Engineering, 5(6), 5224-5233.
Li, L., Ge, J., Chen, R., Wu, F., Chen, S., & Zhang, X. (2010a). Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management, 30(12), 2615-2621.
Li, L., Ge, J., Wu, F., Chen, R., Chen, S., & Wu, B. (2010b). Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials, 176(1), 288-293.
Li, L., Lu, J., Ren, Y., Zhang, X. X., Chen, R. J., Wu, F., & Amine, K. (2012). Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources, 218, 21-27.
Li, L., Qu, W., Zhang, X., Lu, J., Chen, R., Wu, F., & Amine, K. (2015). Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources, 282, 544-551.
Li, L., Zhai, L., Zhang, X., Lu, J., Chen, R., Wu, F., & Amine, K. (2014). Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources, 262, 380-385.
Li, Q., Zheng, Y., Xiao, D., Or, T., Gao, R., Li, Z., . . . Chen, Z. (2020). Faradaic Electrodes Open a New Era for Capacitive Deionization. Advanced Science, 7(22), 2002213.
Li, S., Wu, X., Jiang, Y., Zhou, T., Zhao, Y., & Chen, X. (2021). Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries. Waste Management, 136, 18-27.
Li, Y., Wang, L., Zhang, K., Liang, F., Yao, Y., & Kong, L. (2022). High performance of LiFePO4 with nitrogen and phosphorus dual-doped carbon layer for lithium-ion batteries. Journal of Alloys and Compounds, 890, 161617.
Liang, Z., Cai, C., Peng, G., Hu, J., Hou, H., Liu, B., . . . Yang, J. (2021). Hydrometallurgical Recovery of Spent Lithium Ion Batteries: Environmental Strategies and Sustainability Evaluation. ACS Sustainable Chemistry & Engineering, 9(17), 5750-5767.
Liu, C., Lin, J., Cao, H., Zhang, Y., & Sun, Z. (2019a). Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production, 228, 801-813.
Liu, G., Zhao, Z., & Ghahreman, A. (2019b). Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy, 187, 81-100.
Liu, H., Zhang, J., Xu, X., & Wang, Q. (2020). A Polyoxometalate-Based Binder-Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination. Chemistry – A European Journal, 26(19), 4403-4409.
Liu, W., Zhong, X., Han, J., Qin, W., Liu, T., Zhao, C., & Chang, Z. (2019c). Kinetic Study and Pyrolysis Behaviors of Spent LiFePO4 Batteries. ACS Sustainable Chemistry & Engineering, 7(1), 1289-1299.
Lombardo, G., Ebin, B., Steenari, B.-M., Alemrajabi, M., Karlsson, I., & Petranikova, M. (2021). Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector. Resources, Conservation and Recycling, 164, 105142.
Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., & Sun, Z. (2018). A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 6(2), 1504-1521.
Ma, J., Ma, J., Zhang, C., Song, J., Dong, W., & Waite, T. D. (2020). Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. Water Research, 168, 115186.
Ma, L., Nie, Z., Xi, X., & Li, X. (2013). Theoretical simulation and experimental study on nickel, cobalt, manganese separation in complexation–precipitation system. Separation and Purification Technology, 108, 124-132.
Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K., & Yu, D. (2021). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 491, 229622.
Manthiram, A. (2017). An Outlook on Lithium Ion Battery Technology. ACS Central Science, 3(10), 1063-1069.
Mao, J., Li, J., & Xu, Z. (2018). Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries. Journal of Cleaner Production, 205, 923-929.
Mekonnen, Y., Sundararajan, A., & Sarwat, A. I. (2016, 30 March-3 April 2016). A review of cathode and anode materials for lithium-ion batteries. Paper presented at the SoutheastCon 2016.
Miao, Y., Liu, L., Zhang, Y., Tan, Q., & Li, J. (2022). An overview of global power lithium-ion batteries and associated critical metal recycling. Journal of Hazardous Materials, 425, 127900.
Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789.
Muenzel, V., Hollenkamp, A. F., Bhatt, A. I., de Hoog, J., Brazil, M., Thomas, D. A., & Mareels, I. (2015). A Comparative Testing Study of Commercial 18650-Format Lithium-Ion Battery Cells. Journal of The Electrochemical Society, 162(8), A1592-A1600.
Nayaka, G. P., Pai, K. V., Santhosh, G., & Manjanna, J. (2016). Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy, 161, 54-57.
Nguyen, V. N. H., & Lee, M. S. (2021). Separation of Co(II), Ni(II), Mn(II) and Li(I) from synthetic sulfuric acid leaching solution of spent lithium ion batteries by solvent extraction. Journal of Chemical Technology & Biotechnology, 96(5), 1205-1217.
Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18(5), 252-264.
Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205.
Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination, 228(1), 10-29.
Orooji, Y., Nezafat, Z., Nasrollahzadeh, M., Shafiei, N., Afsari, M., Pakzad, K., & Razmjou, A. (2022). Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination, 529, 115624.
Ouyang, C. Y., Shi, S. Q., & Lei, M. S. (2009). Jahn–Teller distortion and electronic structure of LiMn2O4. Journal of Alloys and Compounds, 474(1), 370-374.
Pant, D., & Dolker, T. (2017). Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries. Waste Management, 60, 689-695.
Peng, C., Hamuyuni, J., Wilson, B. P., & Lundström, M. (2018). Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system. Waste Management, 76, 582-590.
Peng, F., Mu, D., Li, R., Liu, Y., Ji, Y., Dai, C., & Ding, F. (2019). Impurity removal with highly selective and efficient methods and the recycling of transition metals from spent lithium-ion batteries. RSC Advances, 9(38), 21922-21930.
Pillot, C. (2017). Avicenne Energy. Information for Growth.
Pillot, C. (2019). The rechargeable battery market and main trends 2018-2030. Paper presented at the 36th Annual International Battery Seminar & Exhibit. Avicenne Energy.
Pindar, S., & Dhawan, N. (2020). Evaluation of in-situ microwave reduction for metal recovery from spent lithium-ion batteries. Sustainable Materials and Technologies, 25, e00201.
Pudas, J., & Karjalainen, T. (2011). Best Battery Recycling. Dry Technology.
Reddy, M. V., Mauger, A., Julien, C. M., Paolella, A., & Zaghib, K. (2020). Brief History of Early Lithium-Battery Development. Materials, 13(8).
Rouhi, H., Karola, E., Serna-Guerrero, R., & Santasalo-Aarnio, A. (2021). Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes. Journal of Energy Storage, 35, 102323.
Schipper, F., Bouzaglo, H., Dixit, M., Erickson, E. M., Weigel, T., Talianker, M., . . . Aurbach, D. (2018). From Surface ZrO2 Coating to Bulk Zr Doping by High Temperature Annealing of Nickel-Rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries. Advanced Energy Materials, 8(4), 1701682.
Scrosati, B. (2000). Recent advances in lithium ion battery materials. Electrochimica Acta, 45(15), 2461-2466.
Seip, A., Safari, S., Pickup, D. M., Chadwick, A. V., Ramos, S., Velasco, C. A., . . . Alessi, D. S. (2021). Lithium recovery from hydraulic fracturing flowback and produced water using a selective ion exchange sorbent. Chemical Engineering Journal, 426, 130713.
Senoussi, H., & Bouhidel, K. E. (2018). Feasibility and optimisation of a batch mode capacitive deionization (BM CDI) process for textile cationic dyes (TCD) removal and recovery from industrial wastewaters. Journal of Cleaner Production, 205, 721-727.
Setiawan, H., Petrus, H. T. B. M., & Perdana, I. (2019). Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid. International Journal of Minerals, Metallurgy, and Materials, 26(1), 98-107.
Smith, W. N., & Swoffer, S. (2013). Recovery of lithium ion batteries. In: Google Patents.
Sun, L., & Qiu, K. (2011). Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. Journal of Hazardous Materials, 194, 378-384.
Sun, N., Zhou, H., Zhang, H., Zhang, Y., Zhao, H., & Wang, G. (2021). Synchronous removal of tetracycline and water hardness ions by capacitive deionization. Journal of Cleaner Production, 316, 128251.
Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., & Presser, V. (2015). Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science, 8(8), 2296-2319.
Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., . . . Zeng, G. (2019). Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research, 150, 225-251.
Tao, R., Xing, P., Li, H., Sun, Z., & Wu, Y. (2022). Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching. Resources, Conservation and Recycling, 176, 105921.
Thackeray, M. M. (1997). Manganese oxides for lithium batteries. Progress in Solid State Chemistry, 25(1), 1-71.
Thamilselvan, A., Govindan, K., Nesaraj, A. S., Maheswari, S. U., Oren, Y., Noel, M., & James, E. J. (2018). Investigation on the effect of organic dye molecules on capacitive deionization of sodium sulfate salt solution using activated carbon cloth electrodes. Electrochimica Acta, 279, 24-33.
Tokoro, C., Lim, S., Teruya, K., Kondo, M., Mochidzuki, K., Namihira, T., & Kikuchi, Y. (2021). Separation of cathode particles and aluminum current foil in Lithium-Ion battery by high-voltage pulsed discharge Part I: Experimental investigation. Waste Management, 125, 58-66.
Tripathi, A. K. (2021). Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery. Materials Today Energy, 20, 100643.
Wang, B., Ang, E. H., Yang, Y., Zhang, Y., Ye, M., Liu, Q., & Li, C. C. (2021). Post-Lithium-Ion Battery Era: Recent Advances in Rechargeable Potassium-Ion Batteries. Chemistry – A European Journal, 27(2), 512-536.
Wang, J., Wang, G., Wu, T., Wang, D., Yuan, Y., Wang, J., . . . Qiu, J. (2018). Quaternary Ammonium Compound Functionalized Activated Carbon Electrode for Capacitive Deionization Disinfection. ACS Sustainable Chemistry & Engineering, 6(12), 17204-17210.
Wang, L., & Lin, S. (2019a). Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening. Environmental Science & Technology, 53(10), 5797-5804.
Wang, M., Wang, J., Si, J., Chen, F., Cao, K., & Chen, C. (2022a). Bifunctional composite separator with redistributor and anion absorber for dendrites-free and fast-charging lithium metal batteries. Chemical Engineering Journal, 430, 132971.
Wang, Q., Jiang, L., Yu, Y., & Sun, J. (2019b). Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 55, 93-114.
Wang, R., Xu, B., Chen, Y., Yin, X., Liu, Y., & Yang, W. (2022b). Electro-enhanced adsorption of lead ions from slightly-polluted water by capacitive deionization. Separation and Purification Technology, 282, 120122.
Wang, X., Gaustad, G., & Babbitt, C. W. (2016). Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Management, 51, 204-213.
Wang, X., Zhang, X., Dai, L., Guo, H., Shi, P., Min, Y., & Xu, Q. (2020). Recycling the Cathode Scrap of Spent Lithium-Ion Batteries as an Easily Recoverable Peroxymonosulfate Catalyst with Enhanced Catalytic Performance. ACS Sustainable Chemistry & Engineering, 8(30), 11337-11347.
Weng, D., Duan, H., Hou, Y., Huo, J., Chen, L., Zhang, F., & Wang, J. (2020). Introduction of manganese based lithium-ion Sieve-A review. Progress in Natural Science: Materials International, 30(2), 139-152.
Williard, N., He, W., Hendricks, C., & Pecht, M. (2013). Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability. Energies, 6(9).
Wuschke, L., Jäckel, H.-G., Leißner, T., & Peuker, U. A. (2019). Crushing of large Li-ion battery cells. Waste Management, 85, 317-326.
Xing, W., Liang, J., Tang, W., He, D., Yan, M., Wang, X., . . . Huang, M. (2020). Versatile applications of capacitive deionization (CDI)-based technologies. Desalination, 482, 114390.
Xu, X., Chen, Y., Wan, P., Gasem, K., Wang, K., He, T., . . . Fan, M. (2016). Extraction of lithium with functionalized lithium ion-sieves. Progress in Materials Science, 84, 276-313.
Xu, X., Zhou, Y., Fan, M., Lv, Z., Tang, Y., Sun, Y., . . . Wan, P. (2017). Lithium adsorption performance of a three-dimensional porous H2TiO3-type lithium ion-sieve in strong alkaline Bayer liquor. RSC Advances, 7(31), 18883-18891.
Yan, P., Zhu, Y., Pan, X., & Ji, H. (2021a). A novel flame-retardant electrolyte additive for safer lithium-ion batteries. International Journal of Energy Research, 45(2), 2776-2784.
Yan, S., Sun, C., Zhou, T., Gao, R., & Xie, H. (2021b). Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives. Separation and Purification Technology, 257, 117930.
Yang, F., He, Y., Rosentsvit, L., Suss, M. E., Zhang, X., Gao, T., & Liang, P. (2021). Flow-electrode capacitive deionization: A review and new perspectives. Water Research, 200, 117222.
Yao, L., Feng, Y., & Xi, G. (2015). A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries. RSC Advances, 5(55), 44107-44114.
Yao, L. P., Zeng, Q., Qi, T., & Li, J. (2020). An environmentally friendly discharge technology to pretreat spent lithium-ion batteries. Journal of Cleaner Production, 245, 118820.
Yi, T.-F., Yang, S.-Y., & Xie, Y. (2015). Recent advances of Li 4 Ti 5 O 12 as a promising next generation anode material for high power lithium-ion batteries. Journal of Materials Chemistry A, 3(11), 5750-5777.
Yu, D., Huang, Z., Makuza, B., Guo, X., & Tian, Q. (2021). Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review. Minerals Engineering, 173, 107218.
Yu, J., He, Y., Ge, Z., Li, H., Xie, W., & Wang, S. (2018). A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation. Separation and Purification Technology, 190, 45-52.
Zandevakili, S., Ranjbar, M., & Ehteshamzadeh, M. (2014). Recovery of lithium from Urmia Lake by a nanostructure MnO2 ion sieve. Hydrometallurgy, 149, 148-152.
Zeng, X., Li, M., Abd El-Hady, D., Alshitari, W., Al-Bogami, A. S., Lu, J., & Amine, K. (2019). Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 9(27), 1900161.
Zenger, T., Krebs, A., & Van Deutekom, H. J. H. (2010). Method of and apparatus for dismantling and storage of objects comprising alkali metals, such as alkali metal containing batteries. In: Google Patents.
Zhan, R., Oldenburg, Z., & Pan, L. (2018). Recovery of active cathode materials from lithium-ion batteries using froth flotation. Sustainable Materials and Technologies, 17, e00062.
Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2018a). Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Research, 128, 314-330.
Zhang, C., Wu, L., Ma, J., Pham, A. N., Wang, M., & Waite, T. D. (2019a). Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. Environmental Science & Technology, 53(22), 13364-13373.
Zhang, G., He, Y., Feng, Y., Wang, H., Zhang, T., Xie, W., & Zhu, X. (2018b). Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis. Journal of Cleaner Production, 199, 62-68.
Zhang, G., Zhang, J., Zhou, Y., Qi, G., Wu, Y., Hai, C., & Tang, W. (2019b). Synthesis of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorption performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123950.
Zhang, K., Lee, J.-T., Li, P., Kang, B., Kim, J. H., Yi, G.-R., & Park, J. H. (2015). Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4. Nano Letters, 15(10), 6756-6763.
Zhang, Y., Liu, J., Yang, Y., Lin, S., & Li, P. (2021). Preparation of granular titanium-type lithium-ion sieves and recyclability assessment for lithium recovery from brines with different pH value. Separation and Purification Technology, 267, 118613.
Zhang, Y., Wang, W., Fang, Q., & Xu, S. (2020). Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Waste Management, 102, 847-855.
Zhao, X., Wei, H., Zhao, H., Wang, Y., & Tang, N. (2020). Electrode materials for capacitive deionization: A review. Journal of Electroanalytical Chemistry, 873, 114416.
Zhou, G., Wang, D.-W., Li, F., Zhang, L., Li, N., Wu, Z.-S., . . . Cheng, H.-M. (2010). Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials, 22(18), 5306-5313.
Zhu, X., He, X., Yang, J., Gao, L., Liu, J., Yang, D., . . . Kumar, R. V. (2013). Leaching of spent lead acid battery paste components by sodium citrate and acetic acid. Journal of Hazardous Materials, 250-251, 387-396.
Zhuang, L., Sun, C., Zhou, T., Li, H., & Dai, A. (2019). Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant. Waste Management, 85, 175-185.
Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308.
校內:2027-08-08公開