簡易檢索 / 詳目顯示

研究生: 鄭安翔
Cheng, An-Hsiang
論文名稱: 可同時容忍更多毀損點與邊的超立方體環嵌入
Fault-tolerance embedding cycle in the Hypercube with both faulty vertices and faulty edges
指導教授: 謝孫源
hsieh, sun-yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 26
中文關鍵詞: 超立方體
外文關鍵詞: hypercube
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文中 , 我們定義在 n 維的超立方體中 , f_v 代表毀損點的總數 , f_e 代表毀損邊的總數 。
    我們證明結果在 n維的超立方體中 , 嵌入一個長度至少是 2^n-2f_v 的fault-free環 ,可以容錯 f_e <= n-2 和 f_v+f_e <= 2n-4 。
    我們的論文不只是改善 Sengupta(1998) 到目前為止最好的結果 ,容錯 f_e>0 或 f_v <= n-2 和 f_v+f_<= n-1 。
    而且還是延伸 Fu (2003)的論文 , 其中只討論毀損點 。

      Let f_v (respectively, f_e) denote the number of faulty vertices(respectively, edges) in an n-dimensional hypercube 。
    In this paper ,we show that a fault-free cycle of length at least 2^n-2f_v can be embedded in an n-dimensional hypercube with f_e <= n-2 and f_v+f_e <= 2n-4 。
    Our result not only improve the previously best known result of Sengupta (1998) where f_e>0 or f_vleqslant n-2 and f_v+f_e <= n-1 were assumed , but also extends the result of Fu (2003) where only the faulty vertices are considered 。

    1.導言......................................4 2.背景......................................6 3.最長的路徑嵌入............................9 4.環嵌入...................................16 5.結語.....................................22 參考文獻...................................23

    [1] S.G.Akl, Parallel Computation:Models and Methods.
    Prentice Hall,(1997)
    [2] B.Alspach , J.C.Bermond , and D.Sotteau , "Decomposition into Cycles I. Hamiltonian Decomposition" ,
    Theory of Computing Systems , Technical Report 87-
    12 , Simon Fraser University (1987) .
    [3] J.Bruck, R. Cypher, and D. Soroker , "Embedding cube-connected-cycles graphs into faulty hyper-
    cubes", IEEE Transactions on Computers, vol.43, no.10, pp.1210{1220,(1994).
    [4] M. Y. Chan and S. J. Lee , "Distributed Fault-Tolerant Embeddings of Rings in Hypercubes" , Jour-
    nal of Parallel and Distributed Computing , 11 , pp.63-71 (1991) .
    [5] M. Y. Chan and S. J. Lee , "Fault-tolerant Embeddings of complete binary trees in Hypercubes" , IEEE
    Transactions on Parallel and Distributed Systems , vol.4 ,no.3, pp. 540-547 (1993).
    [6] M. Y. Chan and K. G. Shin , "Processor allocation in an n-cube multiprocessor using gray codes" , IEEE
    Transactions on Computers , vol.C-36, pp. 1396-1407 (1987) .23
    [7] Jung-Sheng Fu , "Fault-tolerant cycle embedding in
    the Hypercube" , Parallel Computing , vol.29 , pp. 821-832 (2003) .
    [8] Jung-Sheng Fu and Gen-Huey Chen , "Hamiltonicity of the Hierarchical Cubic Network" , Theory of Computing Systems , vol.35 , pp. 59-79 (2002) .
    [9] S.Y.Hsieh ,and G.H. Chen and C.W. Ho, " Embed longest rings onto star graphs with vertex faults" , in
    Proceedings of the International Conference on Parallel Processing , pp. 140-147 (1998) .
    [10] Chien-Hung Huang , Ju-Yuan Hsiao and R.C.T. Lee, "An optimal embedding of cycles into incomplete
    hypercubes", Information Processing Letters , vol.72 ,pp. 213-218 (1999) .
    [11] S. Lati , S. Q. Zheng , N. Bagherzadeh , " Optimal ring embedding in Hypercubes with faulty links " ,
    Processings of the IEEE Symposium on Fault-Tolerant Computing , pp. 178-184 (1992) .
    [12] F. T. Leighton , " Introduction to Parallel Algorithms and Architecture:Array Trees Hypercubes" Morgan
    Kaufmann, San Mateo, CA, (1992).
    [13] R.A.Rowley and B.Bose , " Fault-tolerant ring embedding in deBruijn networks", IEEE Transactions on
    Computers, vol.42, no.12, pp.1480-1486,(1993)24
    [14] A.Sen, A.sengupta, and S.Bandyopadhyay, "On some topological properties of hypercube,incomplete hyper-
    cube and supercube" in Proceedings of the International Parallel Processing Symposium Newport Beach,
    April,pp.636-642,(1993).
    [15] Abhijit Sengupta , "On ring embedding in hypercubes with faulty nodes and links" , Information Processing
    Letters , 68 , pp.207-214 (1998) .
    [16] G.Tel, Topics in distributed algorithms. Cambridge Int'l Series on Parallel Computation, Cambridge Universitry Press,(1991).
    [17] Chang-Hsiung Tsai, Jimmy J.M.Tam , Tyne Liang, and Lih-Hsing Hsu, "Fault-tolerant hamiltonian laceability of hypercubes", Information Processing Letters, vol.83, no.6, pp.301-306,(2002).
    [18] Yu-Chee Tseng , "Embedding a ring in a hypercube with both faulty links and faulty nodes" , Information Processing Letters , 59 , pp. 217-222 (1996) .
    [19] Yu-Chee Tseng, S.H.Chang, and J.P.Sheu, "Fault-tolerant ring embedding in star graphs with both
    link and node failures", IEEE Transactions on Parallel and Distributed Systems, vol.8, no.12, pp.1185-1195,(1997)25
    [20] Yu-Chee Tseng , T.H. Lai , "On the embedding of aclass of regular graphs in a faulty hypercube ", Journal
    of Parellel Distributed Computing , vol.37, pp. 200-206,(1996)
    [21] D.B.West, Introduction to Graph Theory. Prentice-Hall, Upper Saddle River, NJ 07458,(2001)
    [22] P. J. Yang , C. S. Raghavendra , "Embedding and recon guration of binary trees in faulty hypercubes" ,
    IEEE Transactions on Parallel Distributed Systems , vol.7, no.3 , pp.237-245 (1996) .
    [23] P. J. Yang , S. B. Tien and C. S. Raghavendra , "Embedding of rings and meshes onto faulty Hypercubes
    using free dimensions" , IEEE Transactions on Computers , 43(5) , pp. 608-613 (1994) .

    下載圖示 校內:2005-06-29公開
    校外:2005-06-29公開
    QR CODE