簡易檢索 / 詳目顯示

研究生: 王怡青
Wang, I-Chin
論文名稱: 完美流體量子宇宙與輻射為主的暴漲前宇宙其宇宙微波背景輻射的各向異性效應
Quantum Perfect Fluid Cosmology and CMB Anisotropy in radiation-dominated pre-inflation Universe
指導教授: 黃文宏
Huang, Wung-Hong
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 83
中文關鍵詞: 暴漲量子宇宙完美流體宇宙微波背景輻射
外文關鍵詞: inflation, CMB, perfect fluid, quantum cosmology
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共有六章. 第一章說明如何用熱力學參數表示速度. 第二章將三維速度推廣至四維並說明如何應用在完美流體宇宙的量子化. 第三章將此方法用在Kaluza-Klein宇宙使得額外的維度可以縮小. 第四章用此方法探討時間的意義. 第五章探討暴漲前宇宙其宇宙微波背景輻射的各向異性效應. 第六章是結論.

    This thesis include 6 chapters. Chapter 1 illustrate how velocity can be described by thermodynamical variables. Chapter 2 extended three velocity presentation to four velocity and how to use this special presentation in canonical quantization for perfect fluid cosmology. Chapter 3 showed how this work on Kaluza-Klein Cosmology and obtaining useful results for the extra dimensions contraction. Chapter 4 is try to understand the meaning of time variable within this method. Chapter 5 is about Cosmic Microwave Background Radiation(CMB). We want to know if there was a pre-inflation radiation-dominated phase exist before inflation, would this effect cause the low power spectrum of the largest scale we observed today deviate from the theoretical prediction value? Chapter 6 is a short conclusion.

    Abstract.........................................v Acknowledgement.................................vi List of Tables .................................ix List of Figures .................................x 1. Perfect Fluid.................................1 1.1 Perfect Fluid..............................2 1.2 Fluid Dynamics.............................2 1.2.1 Lagrangian description................3 1.2.2 Eulerian description..................4 2. Relativistic Perfect Fluid and Quantization...8 2.1 Schutz's formalism..................8 2.2 Perfect Fluid Hamiltonian......................10 2.3 Wheeler-DeWitt equation and Time variable.......13 3. Quantum Perfect Fluid Kaluza-Klein Cosmology.......19 3.1 Introduction to Kaluza-Klein Cosmology..........19 3.2 Action of Perfect Fluid and Quantization.........25 3.2.1 Action of Perfect Fluid...................25 3.2.2 Quantization of Perfect Fluid..............27 3.3 Wheeler-DeWitt Equation of Perfect-Fluid Kaluza-Klein Theory....28 3.4 Quantum Perfect-Fluid Kaluza-Klein Cosmology with Stiff Fluid $p= ho$.........................30 3.5 Quantum Perfect-Fluid Kaluza-Klein Cosmology with $p approx ho$..........................35 3.6 Conclusion............................38 4. Time variable in Quantum Perfect Fluid Cosmology.....41 4.1 Introduction............................41 4.2 The Quantum Model.............................43 4.3 Behavior of the scale factor with the selection of time variable.............................44 4.3.1 Radiation ($alpha=1/3$)..............45 4.3.2 Dust ($alpha=0$).............................46 4.4 Discussion..............................47 5. Effects of a pre-inflation radiation-dominated epoch to CMB anisotropy............................49 5.1 Cosmic Microwave Background Radiation and Inflation.............................50 5.1.1 Definition of inflation................53 5.1.2 The inflation -- the scalar field model........54 5.2 Effects of a pre-inflation radiation-dominated epoch to CMB anisotropy..............................59 5.3 The Model............................61 5.4 Numerical Results..............................63 5.5 Conclusion..............................68 6. Conclusion...........................75 Bliography................................80

    1. Steven Weinberg, {it GRAVITATION AND COSMOLOGY}, (John Wiley and Sons, 1972).

    2. S. Weinberg, Phys. Lett. { f125B} (1983) 265.

    3. M. J. Duff, B. E. W. Nilsson, and C. N. Pope, Phys. Rep. { f130} (1986) 1.

    4. M. B. Green, J. H. Schwarz, and E. Witten, {it Superstring Theory}, Cambridge University Press,
    1987.

    5. J. Polchinski, {it String Theory}, Cambridge University Press, 1998.

    6. A. Chods and S. Detweiler, Phys. Rev. D{ f21} (1980) 2167.

    7. P.G.O. Freund, Nucl. Phys. B { f209} (1982) 146.

    8. D. Bailin and A. Love, Rep. Prog. Phys, { f50} (1987) 1087.

    9. J. M. Overduin, P. S. Wesson, Phys. Rep. { f283} (1997) 303 [gr-qc/9805018].

    10. D. Sahdev, Phys. Letts. B { f137} (1984) 155.

    11. D. Sahdev, Phys. Rev. D{ f30} (1984) 2485.

    12. V. G. Lapchinskii and V. A. Rubakov, Theor. Math. Phys. { f33} (1977) 1076.

    13. N. A. Lemos, J.Math.Phys. { f37} (1996) 1449 [gr-qc/9511082].

    14. F. G. Alvarenga, Nivaldo A. Lemos, Gen.Rel.Grav. { f30} (1998) 681 [gr-qc/9802029].

    15. J. A. de Barros, N. Pinto-Neto, and M. A. Sagioro-Leal, Phys. Letts. A. { f241} (1998) 229 [gr-qc/9710084].

    16. F.G. Alvarenga, J.C. Fabris, N.A. Lemos, G.A. Monerat, Class. Quantum Grav. { f34} (2002) 651 [gr-qc/0106051].

    17. F.G. Alvarenga, A.B. Batista, J.C. Fabris, S.V.B. Goncalves, Gen.Rel.Grav. { f35} (2003) 1659-1677 [gr-qc/0304078].

    18. F.G. Alvarenga, A.B. Batista, J.C. Fabris, S.V.B. Goncalves, "Anisotropic quantum cosmological models: a discrepancy between many-worlds and dBB
    interpretation"[gr-qc/0202009].

    19. B. F. Schutz, Phys. Rev. D{ f2} (1970) 2762.

    20. B. F. Schutz, Phys. Rev. D{ f4} (1971) 3559.

    21. D. Brown, Class. Quant. Grav. { f10} (1993) 1579 [gr-qc/9304026].

    22. D. Brown,, Annals Phys. { f284} (1996) 1.

    23. Y. B. Zeldorich, Sov. Phys. JETP { f14} (1962) 1143.

    24. J. B. Barrow, Nature { f272} (1978) 211.

    25. C. W. Misner, K. S. Thorne, and J. A. Wheeler {it Gravitation} (San Fransisco: Freeman 1973).

    26. I. S. Gradshteyn and I. M. Ryzhik ,"Table of Intergals, Series and Products." Academic Press. New York 1980.

    27. C. Misner, "Minisuperspace" in Magic without Magic: John Archibald Wheeler, (Freeman, 1972).

    28. N. A. Lemos and G. A. Monerat, Gen.Rel.Grav. { f35} (2003) 423 [gr-qc/0210054].

    29. C.C. Lin, 1963 Liquid helium. Proc. Int. School of Physics, Course XXI. New York: Academic Press.

    30. R. L. Seliger and G. B. Whitham(Proceedings of the Royal Society of London. Series A,
    Vol. 305,No 1480(May 21, 1968),p1-25)

    31. Robert M. Wald , GENERAL RELATIVITY , The University of Chicago Press , p98 .

    32. for example let $alpha=frac{1}{3}$ in equation(22) of Gen. Rel. Grav. { f34} (2002) 651 .

    33. A.B. Batista , J.C. Fabris , S.V.B. Gonc{c}alves and J. Tossa , Phys. Rev. D{ f65} (2002)063519 .

    34. formula 3.896-4 , Table of Integrals , Series and Products ,ACADEMIC PRESS .

    35. formula 6.631-4 , Table of Integrals , Series and Products ,ACADEMIC PRESS .

    36. Julian Barbour , Bredan Z. Foster and Niallo Murchadha , Class. Quantum Grav. { f19} (2002) 3217
    and gr-qc/0012089

    37. page 3 of reference 36.

    38. W. Fischler, B. Ratra, L. Susskinf, Nucl. Phys. { f B259}, 730(1985).

    39. D. N. Spergel {it et al.}, Astrophys. J. Suppl. Ser. { f 170}, 377 (2007).

    40. A. Berera, L.-Z. Fang, and G. Hinshaw, Phys. Rev. D { f 57}, 2207
    (1998); G. Efstathiou, Mon. Not. Roy. Astron. Soc. { f 343}, L95
    (2003); C. R. Contaldi {it et al.}, J. Cosmol. Astropart. Phys. 07
    (2003) 2; J. M. Cline, P. Crotty, and J. Lesgourgues, J. Cosmol.
    Astropart. Phys. 09 (2003) 10; B. Feng and X. Zhang, Phys. Lett. B
    { f 570}, 145 (2003); S. Tsujikawa, R. Maartens, and R.
    Brandenberger, Phys. Lett. B { f 574}, 141 (2003); T. Moroi and T.
    Takahashi, Phys. Rev. Lett. { f 92}, 091301 (2004); W. Lee and
    L.-Z. Fang, Phys. Rev. D { f 69}, 023514 (2004); Y.-S. Piao, B.
    Feng, and X. Zhang, Phys. Rev. D { f 69}, 103520 (2004); C. Gordon
    and W. Hu, Phys. Rev. D { f 70}, 083003 (2004); M. Liguori {it et
    al.}, J. Cosmol. Astropart. Phys. 08 (2004) 11; D.~Boyanovsky, H. J.
    de Vega, and N. G. Sanchez, Phys. Rev. D { f 74}, 123007 (2006);
    C.-H. Wu {it et al.}, J. Cosmol. Astropart. Phys. 02 (2007) 6.

    41. See, for example, E. W. Kolb and M. S. Turner, {it The Early Universe} (Addison-Wesley, 1990).

    42. B. A. Powell and W. H. Kinney, Phys. Rev. D { f 76}, 063512 (2007).

    43. N. Kaloper and M. Kaplinghat, Phys. Rev. D { f 68}, 123522 (2003).

    44. A. Vilenkin and L. H. Ford, Phys. Rev. D { f 26}, 1231 (1982).

    45. A. A. Starobinsky, Phys. Lett. B { f 117}, 175 (1982).

    46. A. D. Linde, Phys. Lett. B { f 116}, 335 (1982).

    47. K. Enqvist, K.-W. Ng, and K. A. Olive, Nucl. Phys. B { f 303}, 713 (1988).

    48. U. Seljak and M. Zaldarriaga, Astrophys. J. { f 469}, 437 (1996).

    49. H. V. Peiris and R. Easther, J. Cosmol. Astropart. Phys. 10 (2006) 017.

    50. See, for example, D. J. H. Chung, E. W. Kolb, and A. Riotto, Phys. Rev. D { f 59}, 023501 (1998).

    51. G. Hinshaw {it et al.}, Astrophys. J. Suppl. Ser. { f 170}, 288 (2007).

    52. C. L. Bennett {it et al.}, Astrophys. J. Suppl. Ser. { f 148}, 1 (2003).

    53. A. R. Liddle and S. M. Leach, Phys. Rev. D { f 68}, 103503 (2003).

    下載圖示 校內:立即公開
    校外:2008-07-01公開
    QR CODE