簡易檢索 / 詳目顯示

研究生: 郭建嘉
Kuo, Chien-Chia
論文名稱: 凹槽機構對液態燃料噴注之超音速燃燒流場影響之數值模擬分析
Numerical simulations of the effects of cavity mechanism on a supersonic combustion flow field with liquid fuel injection
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 159
中文關鍵詞: 超音速燃燒液態燃料噴注凹槽數值模擬
外文關鍵詞: Supersonic combustion, Liquid fuel injection, Cavity, Numerical simulation
相關次數: 點閱:91下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選用計算流體力學軟體ANSYS FLUENT進行凹槽機構對液態燃料噴注的超音速燃燒流場影響,首先是根據Wang等人在2015年所發表之文獻,將本研究所建立的數值模擬方法之計算結果與實驗壁面壓力分佈做比對,並捕捉到噴注上游因逆向壓力梯度所產生的連續迴流現象。接著根據Zhang等人在2002年所發表之文獻,在L/D值大於14以上時凹槽內流場會轉為封閉型態,而本研究藉由數值計算成功模擬出封閉型凹槽流場,再次驗證本研究數值方法的可靠及準確性。在參數分析的部分,建立兩組不同凹槽L/D值的燃燒室模型,分別為L/D值為3.0與4.5,其中,L為凹槽長度,而D為凹槽深度,L/D值即為凹槽之長深比。首先觀察不同凹槽L/D值的燃燒現象,在L/D值為3.0的燃燒室內之火焰燃燒溫度比L/D值為4.5的燃燒溫度還高。不論L/D值為3.0或4.5的模型,由於噴注孔半徑固定的條件下,煤油噴注量11.3g/s與13.4g/s時相比,較大的噴注量會擁有較快的噴注速度,因此13.4g/s的煤油較能注入燃燒室中心,所以其燃燒範圍才會在出口附近分佈較廣,但缺點是燃料較無法流入凹槽內進行反應,因此凹槽內的燃燒產物水比11.3g/s時相較少了許多,凹槽內溫度也較低。由計算結果可得知兩者凹槽內迴流區的結構差異性,在L/D值為3.0的凹槽流場中,因為其凹槽深度較深,故在深度中間的截面中可以觀察到四到六個不對等且結構範圍較小的迴流區,凹槽內流場較為複雜且左右兩邊有些微不對稱;而L/D值為4.5的凹槽流場則因為凹槽深度較淺,故在深度中間的截面中則觀察到四個結構完整的迴流區,整體型態上較為對稱。在噴注擺動的方面,因為不同L/D值的凹槽會影響其內部迴流區結構,而這些迴流區同時也會擾動凹槽上方的流場,造成煤油氣產生S型擺動現象,使這些流入凹槽內燃燒的煤油氣也左右不對稱,因此在互相影響之下,才會導致凹槽內流場有些微不對稱的情形發生。在與平板燃燒室比較後可以發現,由於平板燃燒室內無凹槽內迴流區的擾動,所以其燃料噴注後方之流線相對要平穩許多。

    This study uses the computational fluid dynamics software ANSYS FLUENT to analyze the effects of cavity mechanism on a supersonic combustion flow field with liquid fuel injection. First, according to Wang et al. (2015), our numerical simulation results are compared with the experimental wall pressure distribution and the accuracy of our numerical method is proved. During the parameter analysis, two 3D cavity models of L/D = 3.0 and 4.5 are established, where L is the cavity length and D is the cavity depth.
    First, we observe the different L/D combustion phenomena. The flame temperature in the L/D = 3.0 combustor is higher than the flame temperature in the L/D = 4.5 combustor. Regardless of whether using the L/D = 3.0 or 4.5 model, due to the radius of the injection hole being fixed, the large kerosene mass flow rate has faster jet speed, so the 13.4g/s kerosene can be injected into the center of the combustor easily, and the combustion range can be distributed widely in the combustor outlet. But the disadvantages of 13.4g/s are that less fuel flows into the cavity to burn and the cavity temperature is low. According to the simulations results, we can obtain the difference in the structure of the recirculation between these two cavity models. In the L/D = 3.0 cavity flow field, four to six irregular recirculations are observed in the middle cross section because the depth of cavity is deep, the flow field is more complex and the left and right sides are slightly asymmetrical. In the L/D = 4.5 cavity flow field, four structural integrity recirculations are observed in the middle cross section because the depth of the cavity is shallow, and the overall structure is more symmetrical. In the injection oscillation part, different L/D values of the cavity can affect its internal recirculation structure, and the recirculation will also interact with the flow field above the cavity, resulting in the kerosene having an S-type oscillation phenomenon, so the kerosene flowing into the cavity is also asymmetrical. After comparison with the plate combustor, we can find that the flow field of the fuel injection is relatively smooth because there is no cavity recirculation to interact with the flow field in the plate combustor.

    摘要 I 致謝 XI 目錄 XIII 表目錄 XVI 圖目錄 XVII 符號說明 XXVII 第一章 導論 1 §1-1 前言 1 §1-2 文獻回顧 2 §1-3 研究動機與目的 10 第二章 數學與物理模型 12 §2-1 基本假設 13 §2-2 連續相流場之統御方程式 13 §2-3 紊流模型 18 §2-4 離散相流場之統御方程式 21 §2-5 燃燒化學模型 35 第三章 數值方法 39 §3-1 控制體積轉換之傳輸方程式 39 §3-2 壓力耦合演算法求解器 40 §3-3 二階上風法 41 §3-4 離散相計算流程 42 §3-5 鬆弛因子 42 §3-6 收斂標準 43 第四章 結果與討論 44 §4-1 二維超音速燃燒室之網格模型與邊界條件 45 §4-2 二維超音速燃燒室之網格獨立測試 46 §4-3 文獻驗證及超音速燃燒流場分析 47 §4-4 三維超音速燃燒室網格模型與邊界條件 51 §4-5 三維超音速燃燒室之網格獨立測試 52 §4-6 L/D=3.0之超音速燃燒流場分析 53 §4-7 L/D=4.5之超音速燃燒流場分析 59 §4-8 不同L/D值之超音速凹槽燃燒與平板燃燒之相互比較 64 第五章 結論與未來建議 67 §5-1 結論 67 §5-2 未來建議 71 參考文獻 72

    【1】 Tetlow, M. R., and Doolan, C. J., 2007,“Comparison of Hydrogen and Hydrocarbon-Fueled Scramjet Engine for Orbital Insertion,”Journal of Spacecraft and Rockets, Vol.44, No.2, pp.365-373.
    【2】 Lewis, Mark J., 2001,“Significance of Fuel Selection for Hypersonic Vehicle Range,”Journal of Propulsion and Power, Vol.17, No.6, pp.1214-1221.
    【3】 Manna, P., Behera, R., and Chakraborty, D., 2008,“Liquid-Fueled Strut-Based Scramjet Combustor Design: a Computational Fluid Dynamics Approach,”Journal of Propulsion and Power, Vol.24, No.2, pp.274-281.
    【4】 Powell, O. A., Edwards, J. T., Norris, R. B., Numbers, K. E., and Pearce, J. A., 2001,“Development of Hydrocarbon-Fueled Scramjet Engines: The Hypersonic Technology Program,”Journal of Propulsion and Power, Vol.17, No.6, pp.1170-1176.
    【5】 Yu, G., Li, J. G., Yang, S. R., Yue, L. J., and Zhang, X. Y., 2002,“Investigation of Liquid Hydrocarbon Combustion in Supersonic Flow Using Effervescent Atomization,”AIAA Journal.
    【6】 Lin, K. C., Kirkendall, K. A., Kennedy, P. J., and Jackson, T. A., 1999,“Spray Structures of Aerated Liquid Fuel Jets in Supersonic Crossflows,”AIAA Journal.
    【7】 Yue, L. J., and Yu, G., 2003,“Studies on Spray Characteristics of Barbotaged Atomizer,”Journal of propulsion technology, Vol.24, No.4, pp.348-352.
    【8】 Yue, L. J., and Yu, G., 2004,“Numerical Simulation of Kerosene Spray in Supersonic Cross Flow,”Journal of Propulsion Technology, Vol.25, No.1, pp.11-14.
    【9】 Balasubramanyam, M. S., and Chen, C. P., 2006,“Evaporating Spray in Supersonic Streams including Turbulence Effects,”AIAA Aerospace Sciences Meeting and Exhibit.
    【10】劉靜,徐旭, 2010,“超音速橫向氣流中燃料霧化的數值模擬,”北京航空航天大學學報, Vol.36, No.10.
    【11】Yang, D. C., Zhu, W. B., Chen, H., Guo, J. X., and Liu, J. W., 2014,“Model the Secondary Breakup of a Liquid Jet in Supersonic Cross Flows,”Journal of Harbin Engineering University, Vol.35, No.1, pp.62-68.
    【12】Im, K. S., Lin, K. C., and Lai, M. C., 2005,“Spray Atomization of Lquid Jet in Supersonic Cross Flows,”AIAA Aerospace Sciences Meeting and Exhibit.
    【13】Im, K. S., Lin, K. C., Lai, M. C., and Chon, M. S., 2011,“Breakup Modeling of a Liquid Jet in Cross Flow,”International Journal of Automotive Technology, Vol.12, pp.489-496.
    【14】Chenault, C. F., and Beran, P. S., 1998,“k- and Reynolds Stress Turbulence Model Comparisons for Two-Dimensional Injection Flows,”AIAA Journal, Vol. 36, pp.1401-1412.
    【15】Menter, F. R., 1994,“Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,”AIAA Journal, Vol.32, pp.1598-1605.
    【16】宋緯倫, 2010,“不同紊流模式對超音速流場數值模擬結果之影響,”國立成功大學航空太空工程學系碩士論文.
    【17】Aso, S., Okuyama, S., Kawai, M., and Ando, Y., 1991,“Experimental Study on Mixing Phenomena in Supersonic Flows with Slot Injection,”AIAA Journal.
    【18】Liu, O. Z., Cai, Y. H., Hu, Y. L., Liu, J. H., and Ling, W. H., 2007,“The Turbulence Models for Numerical Analysis of Liquid Kerosene Supersonic Combustion,”Acta Aerodynamica Sinica, Vol.25, pp.362-367.
    【19】Gruber, M. R., Bauerle, R. A., Mathur, T., and Hsu, K. Y., 2001,“Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors,”Journal of Propulsion and Power, Vol.17, No.1, pp.146-153
    【20】Gruber, M. R., Donbar, J. M., Carter, C. D., and Hsu, K. Y., 2004,“Mixing and Combustion Studies Using Cavity-Based Flameholders in a Supersonic Flow,”Journal of Propulsion and Power, Vol.20, No.5, pp.769-778.
    【21】Kim, K. M., Baek, S. W., and Han, C. Y., 2004,“Numerical Study on Supersonic Combustion with Cavity-Based Fuel Injection,”International Journal of Heat and Mass Transfer, Vol.47, pp.271-286.
    【22】林翰毅, 2012,“凹槽機構對超燃衝壓引擎流場之影響,”國立成功大學航空太空工程學系碩士論文.
    【23】Zhang, J., Morishita, E., Okunuki, T., and Itoh, H., 2002,“Experimental Investigation on the Mechanism of Flow-Type Changes in Supersonic Cavity Flows,”Trans. Japan Soc. Aero. Space Sci., Vol.45, No.149, pp.170-179.
    【24】Liu, O. Z., Hu, Y. Z., Cai, Y. H., Liu, J. H., and Ling, W. H., 2003,“Overview of Flameholders of Cavities in Supersonic Combustion,”Journal of Propulsion Technology, Vol.24, No.3, pp.265-271.
    【25】Yu, G., Li, J. G., Chang, X. Y., Chen, L. H., and Sung, C. J., 2003,“Fuel Injection and Flame Stabilization in a Liquid-Kerosene-Fueled Supersonic Combustor,”Journal of Propulsion and Power, Vol.19, No.5, pp.885-893.
    【26】鄭瑞圻, 2013,“使用液態碳氫燃料之超音速燃燒流場模擬分析,”國立成功大學航空太空工程學系碩士論文.
    【27】Wang, L., Qian, Z. S., and Gao, L. J., 2015,“Numerical Study of the Combustion Field in Dual-Cavity Scramjet Combustor,”Procedia Engineering, Vol.99, pp.313-319.
    【28】楊凡毅, 2016,“液態噴注於超音速流場之細部流場數值模擬分析,”國立成功大學航空太空工程學系碩士論文.
    【29】ANSYS FLUENT, 2013,“Ansys Fluent 15.0 user guide,”ANSYS Inc.
    【30】Ranz, W. E., and Marshall, W. R., Jr., 1952,“Evaporation from Drops, Part II,”Chemical Engineering Progress Magazine, Vol.48, pp.173-180.
    【31】Iannetti, A. C., and Moder, J. P., 2010,“Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) and National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow,”AIAA Journal.

    下載圖示 校內:2020-08-07公開
    校外:2020-08-07公開
    QR CODE