簡易檢索 / 詳目顯示

研究生: 陳延昇
Chen, Yan-Shen
論文名稱: 評估區域性電離層資料同化模式對於精密單點定位之影響
Evaluate the impact of regional ionospheric data assimilation model on precision point positioning
指導教授: 陳佳宏
Chen, Chia-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 154
中文關鍵詞: 電離層資料同化區域性電離層模式精密單點定位
外文關鍵詞: ionospheric data assimilation, regional ionospheric model, precise point positioning
相關次數: 點閱:164下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精密單點定位(Precise Point Positioning, PPP)結合了單點定位以及相對定位的優勢,能使用單一接收機得到高精度的定位成果,然而其需要花上許多時間收斂定位誤差,導致在即時定位及導航等方面的應用受限。定位誤差的主因之一為電離層的電漿擾動,若是能準確地預測電離層的狀態以及影響量預期能加速PPP的誤差收斂,對導航以及通訊等民生系統的運作有很大的幫助。目前多採用以電離層模式預估電離層誤差量予以扣除的形式,然而電離層模式會受到邊界條件以及設定參數的影響,預估的精確度有限,因此本研究嘗試導入台灣上空人造衛星觀測的電離層資料(Global Navigation Satellite System Total Electron Content, GNSSTEC),並透過資料同化技術中的系集卡爾曼濾波法(Ensemble Kalman Filter, EnKF)和局地系集變換卡爾曼濾波法(Local Ensemble Transform Kalman Filter, LETKF)進行電離層模式—國際參考電離層(International Reference Ionosphere, IRI)的同化修正,建構台灣上空區域性高解析度二維電離層狀態EnKF/IRI以及LETKF/IRI同化模式,並討論有無同化電離層之模式、不同尺度電離層模式、不同時刻、季節與太陽活動性等條件下PPP水平定位誤差與收斂速度之影響與可能原因。
    結果發現,EnKF/IRI和LETKF/IRI同化模式能在台灣上空及其周圍建構出完整且近似於觀測資料分布之電離層結構,但受制於GNSSTEC觀測資料在空間分布上不均勻,於資料涵蓋量較少的區域同化後結構不完整。而由於IRI模式不具備預報能力,長期同化會導致電離層結構不連續等結構不完整狀況,因此並不適合做為資料同化模式背景。透過使用中央氣象局地球物理資料系統提供的中央氣象局站以及歸仁之GNSS測站進行動態GPS PPP定位測試後,使用EnKF/IRI與LETKF/IRI模式比起未經同化的IRI模式來說皆能縮短40%以上的收斂時間。於背景電離層濃度較高的平靜日,區域性EnKF/IRI與LETKF/IRI模式在PPP定位誤差的表現比全球尺度資料同化模式表現更好,代表區域性電離層結構能在導航定位有更好的成效。

    The precise point positioning (PPP) can get the highly precise position by one GNSS receiver. However, it takes lots of time for PPP to converge the positioning error. One of the main reasons is the ionosphere delay. At present, the ionosphere delay is usually estimated by ionospheric models. However, the accuracy of these ionospheric models is affected by boundary conditions and the input parameters. In this study, we constructed the regional high-resolution ionosphere around Taiwan area by use the Ensemble Kalman Filter (EnKF) and Local Ensemble Transfer Kalman Filter (LETKF) to assimilate the ionospheric data from satellite observations into the international reference ionosphere (IRI) model. We then further evaluate the effect of regional assimilation ionosphere models in PPP by comparing the horizontal positioning error and the converge time of PPP with other physics-based and observation-based ionospheric models and the global-scale data assimilation ionospheric model in different times, seasons, and the solar activities.
    Results found that EnKF/IRI and LETKF/IRI models can reconstruct a complete ionospheric structure over Taiwan. After the dynamic GPS PPP positioning test at two stations provided by Central Weather Bureau Geophysical Data System, the error convergence time can be shorted by more than 40% by using both EnKF/IRI and LETKF/IRI assimilation models compared with using IRI model. On days with high ionospheric electron density, the performance of regional EnKF/IRI and LETKF/IRI models is better than the global-scale data assimilation model, indicating that regional ionospheric structures can be more effective in navigation and positioning.

    摘要 I 英文延伸摘要 III 致謝 VII 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 第二章 導航定位原理 5 2.1 最小平方法求得接收機位置 5 2.2 衛星觀測量 7 2.2.1 電碼觀測量 7 2.2.2 載波相位觀測量 8 2.3 定位 9 2.3.1 單點定位 9 2.3.2 相對定位 10 2.3.3 精密單點定位 11 第三章 電離層與電離層模式 17 3.1 電離層簡介 17 3.1.1 電漿的產生、消散與傳輸 17 3.1.2 電離層分層 22 3.1.3 電離層的分布與週期變化 24 3.1.4 太陽黑子與偶發性電離層事件 25 3.1.5 電離層模式在台灣導航定位的影響 27 3.2 電離層延遲 28 3.3 電離層模式 31 3.3.1 全球電離層地圖(Global Ionosphere Map, GIM) 34 3.2.2 國際參考電離層(International Reference Ionosphere, IRI) 35 3.2.3 參數化電離層模式(Klobuchar model) 36 3.3.4 熱氣層-電離層耦合環流電動模式(Thermosphere–Ionosphere-Electrodynamics General Circulation Model, TIE-GCM) 38 3.3.5 資料同化模式(Data Assimilation Research Testbed TIE-GCM, DART/TIE-GCM) 39 3.4 電離層衛星觀測資料(GNSSTEC) 40 第四章 資料同化與卡爾曼濾波法 43 4.1 資料同化技術 43 4.1.1 貝式定理(Bayes' Theorem) 43 4.1.2 資料同化原理 47 4.1.3 資料同化的優點及限制 48 4.2 卡爾曼濾波法 49 4.2.2 系集卡爾曼濾波 51 4.2.3 局地系集變換卡爾曼濾波 53 第五章 研究方法 57 5.1 區域性資料同化電離層模式 57 5.1.1 模式與觀測資料設置 58 5.1.2 資料同化方法 60 5.2 精密單點定位測試 66 第六章 研究成果 71 6.1 電離層資料同化成果 71 6.1.1 EnKF/IRI同化前後模式結構比較 71 6.1.2 LETKF/IRI同化前後模式結構比較 74 6.1.3 EnKF/IRI與LETKF/IRI多次同化對模式的影響 76 6.2 EnKF/IRI與LETKF/IRI應用於動態PPP成效 84 6.3 磁暴事件下EnKF/IRI與LETKF/IRI應用於動態PPP成效 87 6.3.1 測試日期概述 88 6.3.2 2021年10月26日之動態GPS PPP定位成果 88 6.3.3 2021年11月4日之動態GPS PPP定位成果 92 第七章 成果分析與討論 97 7.1 EnKF/IRI與LETKF/IRI 97 7.1.1 不同同化方式對電離層VTEC空間分布的影響 97 7.1.2 IRI模式與平移取代模式運作的效益評估 103 7.2 電離層資料同化模式於GPS PPP之定位成效評估 104 7.2.1 2021年2月2日 105 7.2.2 2021年10月26日 110 7.2.3 2021年11月4日 114 7.2.4 使用電離層模式與否進行PPP定位測試成效之討論 119 第八章 總結與未來工作 123 參考文獻 127 附錄 131

    Angrisano, Antonio & Gaglione, Salvatore & Gioia, Ciro & Massaro, Marco & Troisi, Salvatore. “Benefit of the NeQuick Galileo Version in GNSS Single-Point Positioning,” INTERNATIONAL JOURNAL OF NAVIGATION AND OBSERVATION. 2013. -. 10.1155/1629. 2013.

    Bishop, C. H., B. J. Etherton, and S. J. Majumdar, “Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects,” Mon. Wea. Rev., 129, 420-436. 2001.

    Brunner, F. K., & Gu, M, “An improved model for the dual frequency ionospheric correction of GPS observations,” Manuscripta Geodaetica, 16(3), 205-214. 1991.

    Chen, C. H., C. H. Lin, T. Matsuo, W. H., Chen, I. T., Lee, J. Y., Liu, J. T. Lin, and C. T., Hsu, “Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions, “Journal of Geophysical Research, 121, 5708-5722, 2016a.

    Chapman, S., & Ferraro, V. C, “A new theory of magnetic storms,” Nature, 126(3169), 129-130. 1930.

    Chen, C. H., Lin, C. H., Matsuo, T., Chen, W. H., Lee, I. T., Liu, J. Y., ... & Hsu, C. T, “Ionospheric data assimilation with thermosphere‐ionosphere‐electrodynamics general circulation model and GPS‐TEC during geomagnetic storm conditions,” Journal of Geophysical Research: Space Physics, 121(6), 5708-5722. 2016.

    Chen, C. H., C. H. Lin, J. Y. Liu, T. Matsuo, and W. H., Chen, “The impact of FORMOSAT-5/AIP on the ionospheric space weather,” Terrestrial Atmospheric and Oceanic Sciences, 28, 129-137, 2016c.

    Chen, C. H., C. H. Lin, J. Y. Liu, T. Matsuo, and W. H. Chen, “Ionospheric electron density forecast during 2015 St. Patrick’s geomagnetic storm event,” Journal of Geophysical Research, 121, 11,549-11,559, 2016b.

    Chen, C. H., C. H. Lin, W.-H. Chen, and T. Matsuo, “Modeling the ionospheric prereversal enhancement by using coupled thermosphere-ionosphere data assimilation,” Geophys. Res. Lett., 44, 1652–1659, 2017.

    Davies, K., “Ionospheric Radio, Peter Peregrinus Ltd, London,” 1990,

    Elsheikh, M., Noureldin, A., & Korenberg, M, “Integration of GNSS Precise Point Positioning and Reduced Inertial Sensor System for Lane-Level Car Navigation,” IEEE Transactions on Intelligent Transportation Systems, 1-16. 2020.

    Elsobeiey, M., & El-Rabbany, A, “Convergence Time Improvement of Precise Point Positioning,” TS04J—Geodetic Applications in Various Situations, 5249. 2011.

    Gonzalez, W., Joselyn, J.-A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B., & Vasyliunas, V. “What is a geomagnetic storm?” Journal of Geophysical Research: Space Physics, 99(A4), 5771-5792. 1994.

    Hofmann-Wellenhof, Bernhard & Lichtenegger, Herbert & Collins, James, “Global Positioning System,” Theory and practice. 10.1007/978-3-7091-6199-9. 2001.

    Hsu, C.-T., T. Matsuo, W. Wang, and J.-Y. Liu, “Effects of inferring unobserved thermospheric and ionospheric state variables by using an Ensemble Kalman Filter on global ionospheric specification and forecasting,” J. Geophys. Res. Space Physics, 119, 9256-9267, 2014.

    Klobuchar, J. A., “Ionospheric Time-Delay Algorithm for Single Frequency GPS Users,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-23, no. 3, pp. 325-3311987,

    Kouba, Jan, Héroux, Pierre. “Precise Point Positioning Using IGS Orbit and Clock Products,” GPS Solutions. 5. 12-28. 10.1007/PL00012883, 2001.

    Lee, I. T., T. Matsuo, A. D. Richmond, J. Y. Liu, W. Wang, C. H. Lin, J. L. Anderson, and M. Q. Chen, “Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering,” J. Geophys. Res., 117, A10318, 2012.

    Lee, I. T., H. F. Tsai, J. Y. Liu, C. H. Lin, T. Matsuo, and L. C. Chang, “Modeling impact of FORMOSAT-7/COSMIC-2 mission on ionospheric space weather monitoring,” J. Geophys. Res. Space Physics, 118, 6518-6523, 2013.

    Leick, Alfred, Rapoport, Lev, Tatarnikov, Dmitry, “GPS Satellite Surveying,” 10.1002/9781119018612. 2015.

    Liu, Yi & Zhou, Chen & Tang, Qiong & Chen, Guanyi & Zhao, Zhengyu, “Geomagnetic conjugate observations of ionospheric disturbances in response to a North Korean underground nuclear explosion on 3 September 2017,” Annales Geophysicae. 37. 337-345. 10.5194/angeo-37-337-2019, 2019.

    Matsuo, T., and E. A. Araujo-Pradere, “Role of thermosphere-ionosphere coupling in a global ionospheric specification,” Radio Sci., 46, RS0D23, 2011.

    Meurer, Michael, Antreich, Felix. “Springer Handbook of Global Navigation Satellite Systems,” Signals and Modulation. 10.1007/978-3-319-42928-1_4. 2017.

    Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., ... & Yorke, J. A, “A local ensemble Kalman filter for atmospheric data assimilation,” Tellus A: Dynamic Meteorology and Oceanography, 56(5), 415-428. 2004.

    Panda, Sampad Kumar & Gedam, Shirish & Rajaram, Girija, “GPS derived ionospheric TEC response to annular solar eclipse over Indian region on 15 January 2010,” International Conference on Space Science and Communication, IconSpace. 213-218. 10.1109/IconSpace.2013.6599467. 2013.

    Schaer, S., Gurtner, W., & Feltens, J, “IONEX: The ionosphere map exchange format version 1,” Paper presented at the IGS AC workshop, Darmstadt, Germany. 1998.

    Schove, D. J. “Sunspot cycles” Hutchinson Ross Publishing Co., Stroudsburg. 1983.

    Teunissen, P. J. G. and O. Montenbruck, “Springer Handbook of Global Navigation Satellite Systems, Springer International Publishing,” ISBN: 978-3-319-42926-7. 2017.

    Wang, N., Yuan, Y., Li, Z., Huo, X. “Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections” Advances in Space Research, 57(7), 1555-1569. 2016.

    李皇緣,使用全球電離層模型提升 GPS 精密單點定位成果,成功大學測量及空
    間資訊學系研究所碩士論文,共 78頁,2021。

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE