簡易檢索 / 詳目顯示

研究生: 王昭勛
Wang, Chao-Hsun
論文名稱: 南海東北部揭陽凹陷多期正斷層發育的構造型態及演化
Structural Mode and Evolution of Multi-stage Normal Fault Development in Jieyang Depression, NE South China Sea
指導教授: 楊耿明
Yang, Kenn-Ming
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 127
中文關鍵詞: 揭陽凹陷正斷層多期張裂侵蝕面
外文關鍵詞: Jieyang Depression, normal fault, multi-stage extension, truncation
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 揭陽凹陷位於南海北坡,珠江口盆地東側,台南盆地南部凹陷西側,大致上位於大陸棚過渡到大陸斜坡的位置。此區域於中生代晚期至古近紀早期地殼張裂時期發育一系列東北-西南走向的半地塹構造,其後在新近紀期間亦發育另兩期正斷層,在這兩期正斷層發育之間被一後張裂期侵蝕面分隔。本研究的主要目的在探討多期正斷層以及侵蝕面在多期張裂的環境中的發育順序,每一期正斷層的空間分布特性,以及年輕斷層的發育受前期構造影響的關聯性。
    揭陽凹陷內的正斷層可分為三種:T1,為半地塹的正斷層,此種斷層僅切過前張裂期以及同張裂期地層;T2,為僅發育於後張裂期地層的正斷層;T3,為切過同張裂期以及後張裂期地層的斷層。本研究又將T2斷層分為兩類:第一類為發育於半地塹上方,且被後張裂期侵蝕面截切的斷層;第二類為發育於侵蝕面之上,規模較小的斷層。T3斷層也分為兩類:第一類為同張裂期發育的斷層於第二期張裂再活動且和發育於後張裂期地層內的斷層相連後繼續活動所形成;第二類為第二期張裂所發育的斷層向下切過同張裂期地層。
    在空間的分布上,T1斷層為東北-西南走向,形成各個大小不一的半地塹;T2斷層大多發育在遠離大陸棚的位置;T3斷層大多分布在研究區域東北側與西北側,接近大陸棚的位置,且大多被侵蝕面所截切。
    由以上結果,本研究認為:在中生代晚期至古近紀早期,南海北坡經歷西北-東南向的張裂作用;在古近紀末,張裂作用停止,形成分離不整合面;接著在新近紀時期又經歷了第二次的張裂活動,而此次的張裂作用為西北西-東南東向;之後出現的侵蝕面將第一類T2斷層和T3斷層上部截切,並在侵蝕面之上形成新的地層,隨後在新地層發育第二類的T2斷層。

    Jieyang Depression is located between the Southern Depression of the Tainan Basin and the Chaoshan Depression of the Pearl River Mouth Basin. A series of NE-SW half graben developed in this area from late Mesozoic to early Paleogene, and then another two stages of normal faulting happened during Neogene. The development of these two stages of normal faults are separated by a post-rift truncation. The main purposes of this study are o investigate he evolutionary sequences of the multi-stages of normal faults and the truncation during the multi-stages of extension, the spatial distribution of each phase of normal fault, and how the younger normal faults were affected by the pre-existing one.
    The normal faults in the Jieyang Depression can be divided into three types. Type 1 faults are the ones related to the Paleogene half graben formation and only cut through the pre-rift and syn-rift strata. Type 2 normal faults only developed in the post-rift strata. Type 3 normal faults cut through the syn-rift and post-rift strata. In this study, we further divide type 2 faults into two different kinds. Type 2-1 faults developed above half graben and cut off by the post-rift truncation. Type 2-2 faults developed after the truncation. Type 3 faults can be divided into two different kinds as well. Type 3-1 faults are the one developed in the syn-rift stage and were reactivated and linked with a fault developed in the later extension. Type 3-2 faults are the type 2 faults that developed continuously cutting downward into the syn-rift strata.
    In terms of spatial distribution, type 1 faults strike NE-SW, forming the half grabens. Most of the type 2 faults are located far away from continental shelf. Type 3 faults mostly distribute on the northeast and northwest sides of the study area, close to the continental shelf, and most of them were cut by the post-rift truncation.
    As a result, from the late Mesozoic to the early Paleogene, the northern slope of the South China Sea experienced a NW-SE extension. At the end of the Paleogene, the extension ceased, forming breakup unconformity. In Neogene, the Jieyang Depression experienced second extension. In this time the extension orientation was NNW-SSE, developing type 2-1 and type 3 faults before the post-rift truncation. The subsequent truncation cuts type 2-1 faults and the upper part of the type 3 faults. After accumulating new strata above truncation, the third stage of extension happened and type 2-2 faults developed after the post-rift truncation.

    中文摘要 iii 英文摘要 v 致謝 x 目錄 xii 圖目錄 xv 第一章 前言 1 第二章 前人研究 7 2.1 基礎理論研究 7 2.1.1 正斷層發育模式 9 2.1.2 半地塹盆地演化模式 12 2.2 區域研究 14 第三章 研究方法 22 3.1 井下資料與震測解釋 22 3.2 正斷層滑移量分析 23 第四章 研究成果 30 4.1 震測剖面解釋 30 4.1.1 西北-東南向剖面解釋 37 4.1.2 東北-西南向剖面解釋 51 4.1.3 BU在各井對比 57 4.2 斷層分類 58 4.3 斷層分析 60 4.3.1 滑移量-深度圖表(T-z plot)和斷層增厚指數(Expansion Index plot,EI) 60 4.3.1.1 F2斷層 60 4.3.1.2 F13斷層 63 4.3.1.3 F16斷層 65 4.3.1.4 F17斷層 67 4.3.1.5 F20斷層 69 4.3.1.6 F22斷層 71 4.3.1.7 F27斷層 73 4.3.1.8 F29斷層 75 4.3.1.9 F35斷層 77 4.4 頂部構造圖 79 4.4.1 起始張裂不整合面頂部構造圖 79 4.4.2 分離不整合面頂部構造圖 81 4.4.3 γ surface頂部構造圖 83 4.4.4 NN2頂部構造圖 85 4.5 時間等厚度圖 87 4.5.1 ROU-BU時間等厚度圖 87 4.5.2 BU-γ surface時間等厚度圖 89 4.5.3 γ surface-NN2時間等厚度圖 91 第五章 討論 93 5.1 地層層厚變化 93 5.2 斷層分析 95 5.3 斷層演化 97 第六章 結論 103 參考文獻 105 附錄A 110

    任建業, 龐雄, 于鵬, 雷超, & 羅盼. (2018). 南海北部陸緣深水-超深水盆地成因機制分析.
    李平魯. (2013). 南海北部及圍區地質與油氣.
    李長之. (1996). 台南盆地區域地質解釋. 中油八十五年度報告, 55.
    李長之, 楊耿明, 丁信修, 陳雄茂, 梅文威, 莊恭周, . . . 陳瑞瓊. (1996). 台灣第三紀地層之油氣探勘. 經濟部八十五年度研究發展報告.
    原振維, 陳堯堂, 周錦德, 楊耿明, 陳雄茂, & 羅仕榮. (1989). 台灣西部第三紀盆地演化與油氣潛能之綜合評估(1/2)---北部盆地與北港高區. 經濟部七十八年度研究發展專題, 366.
    郝滬軍, 林鶴鳴, 楊夢雄, 薛懷艷, & 陳雋. (2001). 潮汕坳陷中生界——油氣勘探的新領域.
    張江陽, 孫珍, & 張素芳. (2014). 珠江口盆地潮汕坳陷中生代構造變形分析. doi:10.3969/j.issn.1009-5470.2014.05.006
    陳雋, 郝滬軍, & 林鶴鳴. (2002). 潮汕坳陷地震資料的改善及中生界構造的新發現.
    楊耿明, 林慶偉, 張皓雲, 張瑜峻, 郭湧鈐, 黃加豪, . . . 楊慶雄. (2014). 「台南盆地西部和其西側大埔凹陷間的盆地劃分與斷層機制」計畫. 台灣西南海域陸棚至深水區古第三紀的沉積體系與探勘潛力計畫 103年度合作研究計畫期末報告, 44.
    欒錫武, 劉鴻, & 彭學超. (2011). 南海北部東沙古隆起的綜合地球物理解釋.
    Cartwright, J. A., Trudgill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9), 1319-1326.
    Chenin, P., Manatschal, G., Picazo, S., Müntener, O., Karner, G., Johnson, C., & Ulrich, M. (2017). Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere, 13(2), 559-576. doi:10.1130/ges01363.1
    Ding, W.-w., Li, J.-b., Li, M.-b., Qiu, X.-l., Fang, Y.-x., & Tang, Y. (2008). A Cenozoic tectono-sedimentary model of the Tainan Basin, the South China Sea: evidence from a multi-channel seismic profile. Journal of Zhejiang University-SCIENCE A, 9(5), 702-713. doi:10.1631/jzus.A071572
    Ferrill, D. A., Morris, A. P., McGinnis, R. N., & Smart, K. J. (2017). Myths about normal faulting. Geological Society, London, Special Publications, 439(1), 41-56. doi:10.1144/sp439.12
    Franke, D., Savva, D., Pubellier, M., Steuer, S., Mouly, B., Auxietre, J.-L., . . . ChamotRooke, N. (2014). The final rifting evolution in the South China Sea. Marine and Petroleum Geology, 58, 704-720.
    Ghalayini, R., Homberg, C., Daniel, J. M., & Nader, F. H. (2017). Growth of layer-bound normal faults under a regional anisotropic stress field. Geological Society, London, Special Publications, 439(1), 57-78. doi:10.1144/sp439.13
    Giba, M., Walsh, J. J., & Nicol, A. (2012). Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253-267. doi:10.1016/j.jsg.2012.01.004
    Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44-58. doi:10.1016/j.gloplacha.2013.12.007
    He, Y., Zhong, G., Wang, L., & Kuang, Z. (2014). Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea. Marine and Petroleum Geology, 57, 546-560. doi:10.1016/j.marpetgeo.2014.07.003
    Huang, K., Zhong, G., He, M., Liu, L., Wu, Z., & Liu, X. (2018). Growth and linkage of a complex oblique-slip fault zone in the Pearl River Mouth Basin, northern South China Sea. Journal of Structural Geology, 117, 27-43. doi:10.1016/j.jsg.2018.09.002
    Jackson, C. A. L., Bell, R. E., Rotevatn, A., & Tvedt, A. B. M. (2017). Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models. Geological Society, London, Special Publications, 439(1), 187-217. doi:10.1144/sp439.22
    Jackson, C. A. L., & Rotevatn, A. (2013). 3D seismic analysis of the structure and evolution of a salt-influenced normal fault zone: A test of competing fault growth models. Journal of Structural Geology, 54, 215-234. doi:10.1016/j.jsg.2013.06.012
    Jackson, C. A. L., Turner, C. C., & Cronin, B. T. (2018). Temporal throw rate variability on gravity-driven normal faults; Constraints from the Gudrun fault, South Viking Graben, offshore Norway. Rift-related coarse-grained submarine fan reservoirs, 423-444. doi:10.31223/osf.Io/tpyb9
    Li, L., Wang, Y., Xu, Q., Zhao, J., & Li, D. (2012). Seismic geomorphology and main controls of deep-water gravity flow sedimentary process on the slope of the northern South China Sea. Science China Earth Sciences, 55(5), 747-757. doi:10.1007/s11430-012-4396-1
    Li, W., Li, S., Alves, T. M., Rebesco, M., Feng, Y., & Liu, Z. (2021). The role of sediment gravity flows on the morphological development of a large submarine canyon (Taiwan Canyon), north‐east South China Sea. Sedimentology, 68(3), 1091-1108. doi:10.1111/sed.12818
    Liao, W.-Z., Lin, A. T., Liu, C.-S., Oung, J.-N., & Wang, Y. (2016). A study on tectonic and sedimentary development in the rifted northern continental margin of the South China Sea near Taiwan. Interpretation, 4(3), SP47-SP65. doi:10.1190/int-2015-0209.1
    Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478. doi:10.1046/j.1365-2117.2003.00215.x
    Liu, C. L., Huang, Y., Wu, J., Qin, G. Q., Yang, T. T., Xia, L. Z., & Zhang, S. Q. (2012). Miocene–Pliocene planktonic foraminiferal biostratigraphy of the Pearl River Mouth Basin, northern South China Sea. . Journal of Palaeogeography, 1(1), 43-56.
    Morley, C. K. (2002). Evolution of large normal faults: Evidence from seismic reflection data. AAPG Bulletin, 86(6), 961-978.
    Prosser, S. (1993). Rift-related linked depositional systems and their seismic expression. Geological Society, London, Special Publications, 71(1), 35-66.
    Reeve, M. T., Bell, R. E., Duffy, O. B., Jackson, C. A. L., & Sansom, E. (2015). The growth of non-colinear normal fault systems; What can we learn from 3D seismic reflection data? Journal of Structural Geology, 70, 141-155. doi:10.1016/j.jsg.2014.11.007
    Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., . . . Zemsky, R. (2009). Global multi‐resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3).
    Si-Chih, S. (1985). The Cenozoic tectonic evolution of offshore Taiwan. Energy, 10(3-4), 421-432.
    Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics, 33(7), 1239-1276. doi:10.1002/2014tc003529
    Walsh, J. J., Nicol, A., & Childs, C. (2002). An alternative model for the growth of faults. Journal of Structural Geology, 24(11), 1669-1675. doi:10.1016/s0191-8141(01)00165-1
    Wernicke, B., & Burchfiel, B. C. (1982). Modes of extensional tectonics. Journal of Structural Geology. Journal of Structural Geologists, 104.
    Whipp, P. S., Jackson, C. A. L., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26(4), 523-549. doi:10.1111/bre.12050
    Xie, H., Zhou, D., Pang, X., Li, Y., Wu, X., Qiu, N., . . . Chen, G. (2013). Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea. Marine Geophysical Research, 34(3-4), 159-173. doi:10.1007/s11001-013-9183-7
    Yang, K.-M., Huang, S.-T., Wu, J.-C., Ting, H.-H., & Mei, W.-W. (2010). Review and New Insights on Foreland Tectonics in Western Taiwan. International Geology Review, 48(10), 910-941. doi:10.2747/0020-6814.48.10.910
    Yang, L., Ren, J., McIntosh, K., Pang, X., Lei, C., & Zhao, Y. (2018). The structure and evolution of deepwater basins in the distal margin of the northern South China Sea and their implications for the formation of the continental margin. Marine and Petroleum Geology, 92, 234-254. doi:10.1016/j.marpetgeo.2018.02.032
    Yin, S., Wang, L., Guo, Y., & Zhong, G. (2015). Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea. Science China Earth Sciences, 58(6), 971-985. doi:10.1007/s11430-014-5044-8
    Yin, S., Zhong, G., Guo, Y., & Wang, L. (2016). Seismic stratigraphy and tectono-sedimentary framework of the Pliocene to recent Taixinan foreland basin in the northeastern continental margin, South China Sea. Interpretation, 4(3), SP21-SP32. doi:10.1190/int-2015-0177.1
    Zhao, F., Wu, S., Sun, Q., Huuse, M., Li, W., & Wang, Z. (2014). Submarine volcanic mounds in the Pearl River mouth basin, northern South China Sea. Marine Geology, 355, 162-172.

    無法下載圖示 校內:2026-10-15公開
    校外:2026-10-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE