| 研究生: |
丁冠堡 Ting, Kuan-Pao |
|---|---|
| 論文名稱: |
利用太陽熱能提升空調機性能的研究 The Study of Air-Conditioner Performance Improvement Using Solar Thermal Energy |
| 指導教授: |
陳世雄
Chen, Shih-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 冷凝器風扇額定轉速 、性能係數 |
| 外文關鍵詞: | condenser fan rotational speed, coefficient of performance |
| 相關次數: | 點閱:85 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
世界能源存量銳減,各種能源價格飛漲的情勢下,各國都將眼光投入了可再生能源。因此太陽能空調開始受到重視,目前太陽能空調主要是以大型廠房與私人別墅為主,對於小型化太陽能空調研究較少,因此本研究希望可以朝太陽熱能小型空調做研究,發展出架構簡單的太陽熱能小型空調。
本研究在探討如何利用大陽熱能於小型空調的設計。做法為使用一個總耗電量400瓦,壓縮機制冷能力為879瓦的小型空調機為平台,利用加熱器模擬太陽日照熱能,分別探討七種不同加熱器之輸出功率: 0瓦、50瓦、100瓦、150瓦、200瓦、250瓦和300瓦,與兩種不同冷凝器風扇轉速:750rpm和1500rpm,之影響,觀測各元件溫度和壓力做為分析,評估比較熱效率的變化。
在冷凝器風扇額定轉速750rpm下,實驗平台加熱器輸出功率從0瓦增加到300瓦時,系統性能係數COP從3下降到2.11,若不考慮加熱器之熱源供給量,系統性能係數COPc從3提升至8.43。在冷凝器風扇額定轉速1500rpm下,加熱器輸出功率從0瓦增加到300瓦時,系統性能係數COP從3.39下降到2.15,若不考慮加熱器之熱源供給量,系統性能係數COPc從3.39提升至12.9。
由研究結果得知,利用太陽熱能來驅動小型空調機能明顯提升空調機的熱能效率,降低實際輸入的功率,此研究結果將有助於太陽熱能小型空調之發展。
Nowadays, countries around the world have been devoting themselves in the development of renewable energy sources as the energy is decreasing while its price is increasing. For this reason, “Solar Air-Conditioner” has gradually attracted researchers’attentions. However, except for the usage in large-scale factories and private villas, solar air-conditioners are not widely used and rarely involved in any miniaturized ones. In this case, this research aims to develop a simple framework of small-scale solar air-conditioners.
The research studies how to design a small-scale air-conditioner with the heat of the sun. Based on a small-scale air-conditioner with a total energy consumption of 400 Watt and the system cooling output 879 Watt as the platform, heaters are utilized to simulate the heat of the sun. The effect of heaters with seven output powers, including 0W, 50W, 100W, 150W, 200W, 250W, and 300W are discussed with the condenser fan with two RPM as 750RPM and 1500RPM. The temperature and pressure of each part is recorded to evaluate and compare the changes of thermal efficiency.
The findings show that the output power of the heater increases from 0 to 300 watt and the coefficient of performance (COP) of the system drops from 3 to 2.1, when the condenser fan is fixed to 750RPM. When the heat supply of the heater is ignored, the COPC, increases from 3 to 8.43. Furthermore, when the condenser fan is fixed to 1500RPM, the output power of the heater increases from 0 to 300 Watt, and the COP drops from 3.39 to 2.15. When the heat supply of the heater is ignored, the COPC increases from 3 to 12.9.
From the research findings, the small-scale air-conditioner driven by the heat of the sun can evidently improve the thermal efficiency and actually reduce power inputting to the compressor. This satisfactory result will benefit the further development of small-scale solar air-conditioners.
[1] Alizadeh, S., “Multi-pressure absorption cycles in solar refrigeration:
a technical and economical study,” Solar Energy, vol. 69, pp. 37–44, 2000.
[2] Alexis, G. K. and Karayiannis, E. K., “A solar ejector cooling system using refrigerant R134a in the Athens area,” Renewable Energy, vol.30,
pp. 1457–1469, 2005.
[3] Balaras, C. A., Grossman, G., Henning, H. M., Infante Ferreira, C. A.,
Podesser, E., Wang, L., and Wiemken, E.,“Solar air conditioning in Europe – an overview, ” Renewable and Sustainable Energy Reviews, vol.11, pp. 299–314, 2007.
[4] Fanney, A. H., Dougherty, B. P. and Davis, M.W., “Measured performance of building integrated photovoltaic panels,” Journal of Solar Energy Engineering, vol. 123, pp. 187–193, 2001.
[5] Grenier, P., Guilleminot, J.J., Meunier, F. and Pons, M., “Solar powered solid adsorption cold store, ” Journal of Solar Energy Engineering,
vol. 110, pp. 192–197, 1988.
[6] Hildbrand, C., Dind, P. and Pons, M. and Buchter, F., “A new solar powered adsorption refrigerator with high performance,” Solar Energy, vol. 77, pp. 311–318, 2004.
[7] Hammad, M. A. and Audi, M. S., “Performance of a solar LiBr-water absorption refrigeration system ,” Renewable Energy, vol. 2, no.3,
pp. 275-282, 1992.
[8] Liu, Y. L. and Wang, R. Z., “Performance prediction of a solar/gas driving double effect LiBr-H2O absorption system,” Renewable Energy, vol. 29, pp.1677-1695, 2004.
[9] Khalid, A. J. and Ali, H. L., “Simulation of a simple absorption refrigeration system”, Energy Conversion and Management , vol.42, pp.1571-1605, 2001.
[10] Murthy, S. S., Balasubramanian, R. and Murthy, M. V., “Experiments on vapour jet refrigeration system suitable for solar energy applications, ” Renewable Energy, vol. 1, pp. 757–768, 1991.
[11] Nguyen, V. M., Riffat, S. B. and Doherty, P.S., “Development of
a solar-powered passive ejector cooling system, ” Applied Thermal Engineering , vol. 21, pp. 157–168, 2001.
[12] Pons, M. and Guilleminot, J. J., “Design of experimental solar-
powered, solid-adsorption ice maker, ” Journal of Solar Energy Engineering, vol. 108, pp. 332–337, 1986.
[13] Saha, B. B. , Akisawa, A.and Kashiwagi, T., “Solar/waste heat
driven two-stage adsorption chiller: the prototype, ” Renewable
Energy, vol. 23, pp.93–101, 2001.
[14] Wang, R. Z., Jia, J. P., Zhu, Y. H., Teng, Y., Wu, J. Y. and Cheng, J.,
“Study on a new solid adsorption refrigeration pair: active carbon fibre - methanol, ” Journal of Solar Energy Engineering, vol 119,
pp. 214–219, 1997.
[15] Wang, R. Z., Li, M., Xu, Y. X. and Wu, J. Y., “An energy efficient
hybrid system of solar powered water heater and adsorption ice maker, ” Solar Energy, vol. 68, pp. 189–195, 2000.
[16] Wilbert, F. S. and Jerold, W. J., “refrigeration & air conditioning second edition,”mcgraw-hill book company, Printed in Singapore,
pp. 2–12, 1982.