| 研究生: |
劉柏佑 Liu, Bo-You |
|---|---|
| 論文名稱: |
圓孔管在彎矩控制循環彎曲負載下之響應與失效 Response and Failure of Round-Hole Tubes under Moment-Controlled Cyclic Bending |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 6061-T6鋁合金圓孔管 、彎矩控制 、循環彎曲 、曲率 、橢圓化 、循環至失效圈數 |
| 外文關鍵詞: | 6061-T6 aluminum round-hole tubes, Controlled moment, Cyclic bending, Curvature, Ovalization, Number of cycles required to initiate failure |
| 相關次數: | 點閱:83 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究在6061-T6 鋁合金圓管中央處鑽孔加工成圓孔直徑分別為2、4、6、8 與10 mm 的圓孔管,並透過彎管試驗機進行在五種不同的彎矩控制( ±700、±600、±500、±400 和±300 N-m)下循環彎曲負載至圓管失效毀損的試驗。根據實驗彎矩-曲率的關係中發現,從第一圈開始,該關係即呈現迴圈的狀態,而隨著循環圈數的增加,迴圈的寬度會漸漸的增加,亦即所測得曲率會隨著循環圈數的增加而漸漸的增加,且越大的圓孔直徑,呈現越寬的迴圈寬度,亦即會有越明顯的曲率變化。根據實驗橢圓化-彎矩的關係中發現,曲線呈現不對稱、棘齒、蝴蝶結、增加的趨勢,而在彎矩的峰值處會產生相對較大的橢圓化值,而最大的橢圓化值則會發生在當圓孔管處於負向彎曲的狀況下,此外擁有較大圓孔直徑的圓孔管,會有較大的橢圓化,反之亦然。根據控制彎矩-循環至失效圈數在雙對數座標的關係中發現,越大的控制彎矩會對應有越小的循環至失效圈數,反之亦然。而當施加相同的控制彎矩時,越小圓孔直徑的圓孔管會有越大的循環至失效圈數。最後,本論文提出了理論公式來描述不同圓孔直徑的6061-T6鋁合金圓孔管在彎曲控制循環負載下的控制彎矩-循環至失效圈數的關係,在與實驗結果比較後發現,本文推導出的經驗公式可合理的描述實驗結果。
In this article, 6061-T6 aluminum alloy tubes were drilled at the center of tubes and processed into round-hole tubes with five different hole diameters of 2, 4, 6, 8 and 10 mm. They were applied at five different controlled moments of ±700, ±600, ±500, ±400 and ±300 N-m under cyclic bending test. The experimental moment-curvature relationship demonstrated a close loop starting from the first cycle, and as the number of cycles increased, the width of the loop gradually increased. However, the ovalization-curvature curves presented asymmetrical and increasing trends when the number of cycles increased. The curves also showed ratcheting and bowtie-like shapes. Although the round-hole tubes with five different hole diameters were tested at five different controlled moments, the controlled moment-number of cycles required to initiate failure relationships on a log–log scale presented five straight lines. Finally, an empirical formulation was proposed for simulating the aforementioned relationship. It is found that the simulation results could reasonably simulate the experimental results.
參考文獻
[1] R. May, “On the flexure of thin cylindrical shells and other ‘thin’ sections,” Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character, vol. 116, no. 773, pp. 104–114, 1927.
[2] E.Reissner and H. J.Weinitschke, “Finite pure bending of circular cylindrical tubes,” Quarterly of applied mathematics, vol. 20, no. 4, pp. 305–319, 1963.
[3] Z. Zhou, L. Xu, C. Sun, and S. Xue, “Brazier effect of thin angle-section beams under bending,” Sustain., vol. 10, no. 9, pp. 1–11, 2018.
[4] S. Kyriakides and P. K. Shaw, “Response and stability of elastoplastic circular pipes under combined bending and external pressure,” Int. J. Solids Struct., vol. 18, no. 11, pp. 957–973, 1982.
[5] P. K. Shaw and S. Kyriakides, “Inelastic analysis of thin-walled tubes under cyclic bending,” Int. J. Solids Struct., vol. 21, no. 11, pp. 1073–1100, 1985.
[6] S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic loads,” J. Pres. Ves. Tech., Transactions of the ASME, vol. 109, no. 2. pp. 169–178, 1987.
[7] S. Kyriakides and G. T. Ju, “Bifurcation and localization instabilities in cylindrical shells under bending-I. Experiments,” Int. J. Solids Struct., vol. 29, no. 9, pp. 1117–1142, 1992.
[8] G. T. Ju and S. Kyriakides, “Bifurcation and localization instabilities in cylindrical shells under bending-II. Predictions,” Int. J. Solids Struct., vol. 29, no. 9, pp. 1143–1171, 1992.
[9] Delivering Critical Decision Support to Energy Providers. Solution Flexible Pipeline Engineering. Retrieved from: https://www.4subsea.com/solutions/flexible risers/ flexible pipeline engineering/
[10] E. Corona and S. Kyriakides, “On the collapse of inelastic tubes under combined bending and pressure,” Int. J. Solids Struct., vol. 24, no. 5, pp. 505–535, 1988.
[11] E. Corona and S. Kyriakides, “An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure,” Thin-Walled Struct., vol. 12, no. 3, pp. 229–263, 1991.
[12] K. L. Lee, C. M. Hsu, W. F. Pan, “Endochronic Simulation for the response of 1020 carbon steel tubes under symmetric and unsymmetric cyclic bending with or without external pressure,” Steel Comp. Struct., vol. 8, no. 2, pp. 99–114, 2008.
[13] W. F. Pan, T. R. Wang, and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending,” Exp. Mech., vol. 38, no. 2, pp. 99–102, 1998.
[14] 張高華、李國龍和潘文峰,"圓管承受循環彎曲負載截面變形量測器之設計",技術學刊,第二十三卷,第一期,21-28頁(2008)。
[15] K. L. Lee, C. Y. Hung, and W. F. Pan, “CCD digital camera system for measuring curvature and ovalization of each cross-section of circular tube under cyclic bending,” J. Chi. Inst. Eng., vol. 34, no. 1, pp. 75–86, 2011.
[16] S. J. Cimpoeru and N. W. Murray, “The large-deflection pure bending properties of a square thin-walled tube,” Int. J. Mech. Sci., vol. 35, no. 3–4, pp. 247–256, 1993.
[17] N. J. Bechle and S. Kyriakides, “Localization in NiTi tubes under bending,” Int. J. Solids Struct., vol. 51, no. 5, pp. 967–980, 2014.
[18] W. F. Pan and Y. S. Her, “Viscoplastic Collapse of Thin-Walled Tubes Under Cyclic Bending,” J. Eng. Mater. Technol., vol. 120, no. 4, pp. 287–290.
[19] K. L. Lee, W. F. Pan, and J. N. Kuo, “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending,” Int. J. Solids Struct., vol. 38, no. 14, pp. 2401–2413, 2001.
[20] W. F. Pan and K. L. Lee, “The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending,” JSME Int. Journal, Ser. A, vol. 45, no. 2, pp. 309–318, 2002.
[21] W. F. Pan, and C. H. Fan, “An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending”. JSME International Journal, Series A, vol. 41, no. 4, pp. 525–531, 1998.
[22] K. L. Lee and W. F. Pan, “Pure bending creep of SUS 304 stainless steel tubes,” Steel Comp. Struct., vol. 2, no. 6, pp. 461–474, 2002.
[23] 徐建民、李國龍和潘文峰,"圓管在對稱與不對稱循環彎曲負載下力學行為之實驗研究",技術學刊,第十八卷,第二期,257-262頁(2003)。
[24] K. L. Lee, W. F. Pan, and C. M. Hsu, “Experimental and theoretical evaluations of the effect between diameter-to-thickness ratio and curvature-rate on the stability of circular tubes under cyclic bending,” JSME Int. Journal, Ser. A, vol. 47, no. 2, pp. 212–222, 2004.
[25] K. H. Chang, C. M. Hsu, S. R. Sheu, and W. F. Pan, “Viscoplastic response and collapse of 316L stainless steel tubes under cyclic bending,” Steel Comp. Struct., vol. 5, no. 5, pp. 359–374, 2005.
[26] K. L. Lee, C. C. Hung, H. Chang, and W. Pan, “Buckling life estimation of circular tubes of different materials under cyclic bending,” J. Chi. Inst. Eng., vol. 33, no. 2, pp. 177–189, 2010.
[27] K. H. Chang, W. F. Pan, and K. L. Lee, “Mean moment effect on circular thin-walled tubes under cyclic bending,” Struct. Eng. Mech., vol. 28, no. 5, pp. 495–514, 2008.
[28] K. H. Chang and W. F. Pan, “Buckling life estimation of circular tubes under cyclic bending”, Int. J. Solids Struct., vol. 46, N
o. 2, pp. 254–270 , 2009.
[29] K. L. Lee, C. Y. Hung, and W. F. Pan, “Variation of ovalization for sharp-notched circular tubes under cyclic bending,” J. Mech., vol. 26, no. 3, pp. 403–411, 2010.
[30] K. L. Lee, C. M. Hsu, and W. F. Pan, “The influence of diameter-to-thickness ratios on the response and collapse of sharp-notched circular tubes under cyclic bending,” J. Mech., vol. 28, no. 3, pp. 461–468, 2012.
[31] 李國龍、洪兆宇和潘文峰,"循環彎曲負載下橢圓形凹槽圓管皺曲損壞之實驗分析",中正嶺學報,第四十一卷,第二期,183-190頁(2012)。
[32] K. L. Lee, C. M. Hsu, and W. F. Pan, “The influence of mean curvature on the collapse of sharp-notched circular tubes under cyclic bending,” J. Chi. Soc. Mech. Eng., vol. 34, no. 5, pp. 461–468, 2013.
[33] K. L. Lee, C. M. Hsu, and W. F. Pan, “Viscoplastic collapse of sharp-notched circular tubes under cyclic bending,” Acta Mech. Solida Sinica, vol. 26, no. 6, pp. 629–641, 2013.
[34] K. Lee, C. Hsu, and W. Pan, “Response of sharp-notched circular tubes under bending creep and relaxation,” Mech. Eng. J., vol. 1, no. 2, pp. 1-14, 2014.
[35] K. L. Lee, C. C. Chung, andW. F. Pan, “Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending,” J. Chi. Inst. Eng., vol. 39, no. 8, pp. 926–935, 2016.
[36] C. C. Chung, K. L. Lee, and W. F. Pan, “Collapse of sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending,” Int. J. Struct. Stab. Dyn., vol. 16, no. 07, 1550035 [24 pages], 2016.
[37] K. L. Lee, K. H. Chang, andW. F.Pan, “Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending,” Struct. Eng. Mech., vol. 60, no. 3, pp. 387–404, 2016.
[38] K. L. Lee, L. C. Chin and W. F. Pan, Elastoplastic response and failure of round-hole tubes under cyclic bending, IFORMATICA, Vol. 31, No. 4, pp. 23-41 , 2020.
[39] 徐日豐、徐建民和潘文峰,"圓管在循環彎曲負載下力學行為之理論研究",技術學刊,第二十卷,第三期,305-313頁,2005。
[40] K. L. Lee, C. C. Chung, and W. F. Pan, “Finite Element ANSYS Analysis of the Behavior for 6061-T6 Aluminum Alloy Tubes under Cyclic Bending with External Pressure,” J. Civil Eng. Arch., vol. 8, no. 6, pp. 673-679 2014.
[41] K. L. Lee, Y. Wang, and W. F. Pan, “Finite Element Analysis on the Response of Local Sharp-Notched Circular Tubes under Cyclic Bending,” Key Eng. Mater., vol. 626, pp. 34–39, 2015.
[42] C. C. Chung, K. L. Lee, and W. F.Pan, “Finite element analysis on the response of 6061-T6 aluminum alloy tubes with a local sharp cut under cyclic bending,” J. Vibroengineering, vol. 18, no. 7, pp. 4276–4284, 2016.
[43] K. L. Lee, K. H. Chang, and W. F. Pan, “Effects of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending,” Int. J. Struct. Stab. Dyn., vol. 18 , no. 07 ,1850099 , 2018.
[44] K. L. Lee, M. L. Weng, and W. F. Pan, “On the failure of round-hole tubes under cyclic bending,” J. Chi. Soc. Mech. Eng., vol. 40, no. 6, pp. 663–673, 2019.
[45] E. Corona and S. P. Vaze, “Buckling of elastic-plastic square tubes under bending,” Int. J. Mech. Sci., vol. 38, no. 7, pp. 753–775, 1996.
[46] A. Binazir, H. Karampour, A. J. Sadowski, and B. P. Gilbert, “Pure bending of pipe-in-pipe systems,” Thin-Walled Struct., vol. 145, 106381, 2019.
[47] S. Engineering, “Cyclic bending tests to determine fully ductile section slenderness limits for cold-formed circular hollow sections,” Journal of Structural Engineering , vol.130, no.7, pp. 1001–1010 , 2004.
[48] M. Elchalakani and X. L. Zhao, “Concrete-filled cold-formed circular steel tubes subjected to variable amplitude cyclic pure bending,” Eng. Struct., vol. 30, no. 2, pp. 287–299, 2008.