簡易檢索 / 詳目顯示

研究生: 彭政展
Peng, Cheng-Chang
論文名稱: P型矽薄膜太陽能電池之低溫奈米鋁金屬誘發多晶矽研究
A Study of Nano Aluminum-Induced Poly-Silicon by Low Temperature for P-Type Silicon Thin Film Solar Cells
指導教授: 林仁輝
Lin, Jen-Fin
共同指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 118
中文關鍵詞: 低溫退火鋁晶粒載子遷移率載子濃度厚度效應的內應力
外文關鍵詞: Low-temperature annealing, nc-Al grains, carrier mobility, carrier concentration, thickness effect on internal stresses
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要使用快速退火製程以奈米鋁金屬誘發poly-Si,以獲得P型矽薄膜太陽能電池。相較於傳統爐管退火,快速退火的高升溫速率(10 °C/s)能在低溫、短時間提供熱能使a-Si誘發形成μc-Si;也因為結晶鋁本身表面能大於使產生矽結晶面(111)最小能量0.89 N/m,可提升矽結晶反應速率,同時鋁/矽介面矽原子能沿著鋁晶界的高能量擴散,在低溫快速退火就能獲得μc-Si。針對不同鋁膜厚度對誘發矽結晶的影響,發現退火前鋁膜厚度大於50 nm具有結晶性,並可降低結晶矽的退火溫度與時間,本文發現當退火熱壓應力達到臨界值,則矽會發生結晶化而與鋁膜厚度無關。鋁/矽介面存在原生氧化層時,鋁誘發退火應力(σan)需達臨界壓應力-380 MPa才能誘發a-Si形成結晶矽,由TEM分析也發現原生氧化層已造成μc-Al往a-Si擴散的阻障層。去除原生氧化層後也有助於結晶鋁提供a-Si在低溫、短時間結晶化,提升載子遷移率並降低鋁誘發退火熱應力(σan)臨界應力僅需達-295 MPa。
    為了消除P型矽孔洞、減少載子濃度與增加載子遷移率,利用創新a-Si/c-Al/a-Si/SiO2/glass三明治結構,探討鋁膜、上下矽膜厚度與退火溫度,使結構未退火內應力(σ0)與退火過程內應力改變(σan-σ0)產生變化。未退火的高內壓應力有助於鋁膜形成細微多晶鋁晶粒並且促使結晶鋁退火過程的高速擴散;同時增加上下層矽膜厚度會增加內應力改變(σan-σ0)的壓應力而有害矽結晶化,而減少內應力改變(σan-σ0)的壓應力則有助於產生大尺寸微晶矽,得到高結晶效率與載子遷移率。適當的三明治厚度設計能使退火溫度低於400 °C,可應用於高效率矽薄膜太陽能P型電池。

    In the research, the process of obtaining P-type Si thin film solar cells using the method of nano-aluminum-induced poly-Si under RTA was investigated. In contrast to conventional furnace annealing, RTA of high eating rate (10 °C/s) supply rapid thermal energy so that a-Si can be induced into μc-Si in a short time at low temperatures. The crystal Al may promote the crystallization reaction because its surface energy is higher than 0.89 N/m, which is the minimum energy required to produce the (111) orientation. Free Si atoms are iduced at the interface of the Al and Si sub-layers by the diffusion of Al alon the grain boundaries. The specimens with μc-Al (>50 nm) underwent Si crystallization at lower annealing temperature or time. Si crystallization started only when the compressive annealing stress (σan) of the composite film formed in the annealing process reached a critical value which is independent of the Al-film thickness. The critical stress for the onset of Si crystallizations is about -380 MPa. The absence of a native oxide layer also allowed Si crystallizations at a lower annealing temperature and a shorter annealing time, and increased the hall carrier mobility significantly. The critical stress required for Si crystallization for specimens prepared without a native oxide layer is about -295 MPa.
    In order to eliminate the voids, reduced carrier concentration, and increased the hall carrier mobility of P-type Si, a-Si/nc-Al/a-Si/SiO2/glass sandwich specimens were prepared with various c-Al film thickness and two a-Si film thicknesses, and annealing temperature on the internal stress σ0 in the specimen before annealing and the internal stress change, (σan-σ0) during the annealing process for efficiency of Si crystallizations. A higher compressive σ0 is advantageous to form a finer c-Al grain size and promote a higher speed of nc-Al diffusions in the annealing process. Simultaneous increases in the thicknesses the first and third layers are harmful for the rise in compressive (σan-σ0) and thus Si crystallization. A lower compressive (σan-σ0) is helpful to create a larger µc-Si grain size. Good Si crystallizations and thus high carrier mobility are generally created by the specimen with a large c-Si grain size. Appropriate thickness designs for the sandwich structure can achieve high compressive σ0 and (σan-σ0), and thus high Si crystallizations even operating the annealing process as low as 400 °C. High-quality poly-Si is an essential material for high-efficiency thin-film solar cells.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-2-1 鋁金屬誘發結晶法 7 1-2-2 鋁金屬誘發伴隨突起物(Hillocks)產生 10 1-2-3 多層結構使降低殘留張應力抑制薄膜孔洞生長 13 1-3 研究目的與內容 14 第二章 應力誘發矽結晶的理論分析 18 2-1 殘留應力理論分析 18 2-1-1 多項式曲線擬合 21 2-1-2 曲率半徑計算的理論分析 22 2-2 退火過程中應力理論分析方法 25 第三章 製程規劃與方法及薄膜分析技術 30 3-1 製程設備方法 30 3-1-1 超高真空離子濺鍍原理 30 3-1-2 電子束蒸鍍原理 32 3-1-3 薄膜熱製程反應機制 33 3-2 薄膜檢測分析技術 34 3-2-1 霍爾量測 (Hall measurement) 34 3-2-2 掃描式電子顯微鏡 (SEM) 36 3-2-3 背向電子繞射技術 (EBSD) 38 3-2-4 聚焦離子束與電子束顯微系統 (DB-FIB) 40 3-2-5 穿透式電子顯微鏡 (TEM) 42 3-2-6 低掠角X-ray光譜儀 (GIXRD) 43 3-2-7 拉曼光譜分析 (Raman spectroscopy) 45 3-2-8 化學分析電子光譜儀 (ESCA)  45 3-2-9 表面粗度儀 (α-Step) 46 3-3 實驗規劃 48 3-3-1 快速低溫鋁金屬誘發矽結晶的方法 49 3-3-2 蒸鍍鋁與離子濺鍍鋁對誘發矽結晶影響 52 3-3-3 連續濺鍍鋁/矽膜探討原生氧化層對矽結晶結影響 53 3-3-4 創新矽/鋁/矽三明治結構增加鋁擴散方向實驗 54 第四章 結果與討論 56 4-1 鋁、矽薄膜結晶特性研究 56 4-1-1非晶矽膜結晶性研究 56 4-1-2鋁膜厚度對結晶性的影響 57 4-2 快速低溫誘發矽結晶 59 4-2-1鋁膜厚度對矽結晶性影響 59 4-2-2應力誘發矽結晶 66 4-2-3蒸鍍鋁與離子濺鍍鋁對誘發矽結晶的影響 76 4-3 原生氧化層的影響 77 4-3-1原生氧化層影響鋁誘發矽結晶所需能量 77 4-3-2原生氧化層造成突起物(Hillocks) 80 4-3-3原生氧化層阻礙鋁/矽介面的交互擴散 82 4-3-4鋁/矽結構的載子遷移率與載子濃度 88 4-4 創新三明治結構分析 89 4-4-1矽/鋁/矽介面快速交互擴散 90 4-4-2鋁金屬的殘留應力誘發矽結晶 96 4-4-3矽/鋁/矽三明治結構誘發的載子遷移率與載子濃度 101 第五章 結論與未來展望 103 5-1 結論 103 5-2 未來展望 104 參考文獻 106 附錄一 論文相關著作 116 附錄二 自述 118

    1.林明獻, “太陽電池技術入門”, 全華圖書股份有限公司 (2007).
    2.D.C. Raynolds, G. Leies, L.L. Antes and R.E. Marburge, “Photovoltaic effect in cadmium sulfide,” Physical Review, Vol. 96, p. 533 (1954).
    3.C. Spinella and S. Lombardo, “Crystal grain nucleation in amorphous silicon”, Journal of Applied Physics, Vol. 84, no. 10, p. 5383 (1998).
    4.S.L. James, H.J. kim and O.T. Michael, “Phase transformation mechanisms involved in excimer laser crystallization of amporphous silicon films”, Apply Physics Letter, Vol. 63, no. 14, p.1969 (1993).
    5.F.A. Quli and J. Singh, “Transmission electron microscopy studies of metal-induced crystallization of amorphous silicon”, Materials Science and Engineering, Vol. B67, p. 139 (1999).
    6.A.M. Al-dhafiri, H.A. El-Jammal, A. Al-Shariah, H.A. Naseem and W.D. Brown, “Influence of nitrogen trifluoride and nitrogen plasma treatment on the formation of hillocks during aluminum induced crystallization of a-Si:H”, Thin solid films, Vol. 422, p. 14 (2002).
    7.O. Ebil, R. Aparicio, S. Hazra, R.W. Birkmire and E. Sutter, “Deposition and structural characterization of poly-Si thin films on Al-coated glass substrates using hot-wire chemical vapor deposition”, Thin Solid Films, Vol. 430, p. 120 (2003).
    8.J.A. Tsai, A.T. Tang, T. Noguchi and R. Reif, “Effects of Ge on material and electrical properties of polycrystalline SixGe1-x thin-film transistors”, Journal of Electrochemical Society, Vol. 142, no. 9, p. 3220 (1995).
    9.J.F. Nijs, “Advanced silicon and semiconducting silicon-alloy based materials and Devices”, Crystal Research and Technology, Vol. 30, p. 790 (1995).
    10.K. Niira, H. Senta, H. Hakuma, M. Komoda, H. Okui, K. Fukui, H. Arimune and K. Shirasawa, “Thin film poly-Si solar cells using PECVD and Cat-CVD with light confinement structure by RIE”, Solar Energy Materail Society, Vol. 74, p. 247 (2002).
    11.T. Aoyama, G. Kawachi, N. Konishi, T. Suzuki, Y. Okajima and K. Miyata, ”Crystallization of LPCVD silicon films by low temperature annealing”, Journal of Electrochemical Society, Vol. 136, no. 4, p. 1169 (1989).
    12.H. Kim, G. Lee, D. Kim and S.H. Lee, “A study of polycrystalline silicon thin films as a seed layer in liquid phase epitaxy using aluminum-induced crystallization”, Current Applied Physics, Vol. 2, p. 129 (2002).
    13.G. Radnoczi, A. Robertsson, H.T.G. Hentzell, S.F. Gong and M.A. Gasan, “Al induced crystallization of a-Si”, Journal of Applied Physics, Vol. 69, no. 9, p. 6394 (1991).
    14.S.M. Choe, J.A. Ahn and O. Kim, “Fabraction of laser-annealed poly-TFT by forming a SixGe1-x thermal barrier”, IEEE Electron Device Letters, Vol. 22, no. 3, p. 121 (2001).
    15.M.S. Haque, H.A. Naseem and W.D. Brown, “Aluminum-induced crystallization and counter-doping of phosphorous-doped hydrogenated amorphous silicon at low temperatures”, Journal of Applied Physics, Vol. 79, p. 7529 (1996).
    16.S.W. Russell, J. Li and J.W. Mayer. “In situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix”, Journal of Applied Physics, Vol. 70, p. 5153 (1991).
    17.L. Hultman, A. Robertson and H.T.G. Hentzell, “Crystallization of amorphous silicon during thin-film gold reaction”, Journal of Applied Physics, Vol. 62, no. 9, p. 3647 (1987).
    18.B. Bian, J. Yie, B. Li and Z. Wu, “Fractal formaton in a-Si:H/Ag/a-Si:H films after annealing”, Journal of Applied Physics, Vol. 73, p. 7402 (1993).
    19.Y. Kawazu, H. Kudo, S. Onari and T. Arai, “Low-temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation”, Japanese Journal Of Applied Physics, Vol. 29, p. 2698 (1990).
    20.M.S. Haque, H.A. Naseem and W.D. Brown, “Interaction of aluminum with hydrogenated amorphous silicon at low temperatures”, Journal of Applied Physics, Vol. 75, p. 3928 (1994).
    21.M.S. Haque, H.A. Naseem and W.D. Brown, “Aluminum-induced degradation and failure mechanisms of a-Si:H solar cells”, Solar Energy Materials and Solar Cells, Vol. 41-42, p. 543 (1996).
    22.莊達人, “VLSI製造技術”, 高立圖書有限公司 (2003).
    23.M.S. Ashtikar and G.L. Sharma, “Silicide-mediated low temperature crystallization of hydrogenated amorphous silicon in contact with aluminum”, Journal of Applied Physics, Vol. 78, no.2, p. 913 (1995).
    24.陳志強, “LTPS低溫複晶矽顯示器技術”, 全華科技圖書公司 (2004).
    25.A.G. Aberle, P.I. Widenborg, A. Straub and N.P. Harder, “Polycrystalline silicon on Glass thin-film solar cell research at UNSW using the seed layer concept”, 3rd World Conference on Photovoltaic Energy Conversion, p.1194 (2003).
    26.H.Y. Kim, B.Kim, J.U. Bae, K.J.H, “Kinetics of electric-field-enhanced crystallization of amorphous silicon in contact with Ni catalyst”, Applied Physics Letter, Vol. 81, no. 27, p.5180 (2002).
    27.J. Kim and D. Kim, “Study of aluminum-induced crystallization process using sputtered Al layer”, 3rd World Conference on Photovoltaic Energy Conversion, Vol. B, p.1248 (2003).
    28.P.I. Widenborg and A.G. Aberle, “Surface morphology of poly-Si films made by aluminium-induced crystallisation on glass substrates”, Journal of Crystal Growth, Vol. 242, p. 270 (2002).
    29.O. Prache, “Active matrix molecular OLED microdisplays”, Dsiplays, Vol. 22, pp. 49 (2001).
    30.E. Iwamura, T. Ohnishi and K. Yoshikawa, “A study of hillock formation on Al-Ta alloy films for interconnections of TFT-LCDs”, Thin Solid Films, Vol. 270, p. 450 (1995).
    31.S.J. Hwang. Y.D. Lee, Y.B. Park, J.H. Lee, C.O. Jeong and Y.C. Joo, “In situ study of stress relaxation mechanisms of pure Al thin films during isothermal annealing”, Scripta Materialia, Vol. 54, p. 1841 (2006).
    32.E. Iwamura, T. Ohnishi, K. Yoshikawa and K. Itayama, “In situ scanning electron microscope observation of hillock and whisker growth on Al- Ta alloy films for interconnections of thin film transistor-liquid crystal displays”, Journal of Vacuum Science & Technology A, Vol. 12, p. 2922 (1994).
    33.R.C. Cammarata, T.M. Trimble and D.J. Srolovitz, “Surface stress model for intrinsic stresses in thin films”, Journal of Materials Research, Vol. 15, p. 2468. (2000).
    34.P. Chaudhari, “Hillock growth in thin films”, Journal of Applied Physics, Vol. 45, p. 4339 (1974).
    35.H.C.W. Huang, P. Chaudhari, C.J. Kirche and M. Murakami, “Hillock growth kinetics in thin Pb-In-Au films”, Philosophical Magazine A, Vol. 54, p. 583 (1986).
    36.M. Zaborowski and P. Dumania, ”Microelectronic Engineering”, Vol. 50, p. 301 (2000).
    37.C.Y. Chang and R.W. Vook, “Thermally induced hillock formation in Al-Cu films”, Jornal of Materials Research, Vol. 4, p. 1172 (1989).
    38.F. Ericson, N. Kristensen, J.A. Schweitz, U. Smith, “A transmission electron microscopy study of hillocks in thin aluminium films“, Journal of Vacuum Science & Technology B, Vol. 9, p. 58 (1991).
    39.D. Gerth, D. Katzer and M. Krohn, “Study of the thermal behaviour of thin aluminium alloy films“, Thin Solid Films, Vol. 208, p. 67 (1992).
    40.M. Ronay and C.F. Aliotta, “Hillock formation in lead films by grain-boundary sliding”, Philosophical Magazine A, Vol. 42, pp. 161 (1980).
    41.R.A. Schwarzer and D. Gerth, “The effect of grain orientation on the relaxation of thermomechanical stress and hillock growth in Al-1%Si conductor layers on silicon substrates”, Journal of Electronic Materials, Vol. 22, no. 6, p. 607 (1993).
    42.P. Hashemi, J. Derakhshandeh, S. Mohajerzadeh, M.D. Robertson, J.C. Bennett, A. Shayan Arani and A. Afzali–Kusha, “Characterization of low-temperature stress-induced crystallization of a-Si on flexible glass substrates by transmission electron microscopy and raman spectroscopy”, The 17th International Conference on Microelectronics ICM , p. 326 (2005).
    43.F. Yang, “Effect of local solid reaction on diffusion-induced stress”, Journal of Applied Physics, Vol. 107, p. 103516-1 (2010).
    44.M. Gioti, S. Logothetides and C. Charitides, “Stress relaxation and stability in thick amorphous crbon films deposited in layer structure”, Applied Physics Letter, Vol. 73, no. 2, p. 184 (1998).
    45.S. Logothetidis, M. Gioti, C. Charitides and P. Patsalas, “New process for the development of hard and stable sputtered amorphous carbon films”, Vacuum, Vol. 53, no. 1-2, p. 61 (2000).
    46.D. Sheeja, B.K. Tay, S.P. Lau, X. Shi and X. Ding, “Structural and tribological characterization of multilayer ta-C films prepared by FCVA with substrate pulse biasing”, Surface and Coatings Technology, Vol. 132, p. 228 (2000).
    47.J. Dutta, I.M. Reaney, P.R. I. Cabarrocas and H. Hofmann, “Multilayered silicon/silicon nitride thin films deposited by plasma-CVD:effects of crystallization”, Nano Structured Materials, Vol. 6, p. 843 (1995).
    48.T. Aoki, H. Hatta, T. Hitomi, H. Fukuda and I. Shiota, “SiC/C multi-layered coating contributing to the antioxidation of C/C composites and the suppression of through-thickness cracks in the layer”, Carbon, Vol. 39, p. 1477 (2001).
    49.M.A. Barghouti, H.A. Safe, H. Naseem, W.D. Brown and M.A. Jassim, “The effects of an oxide layer on the kinetics of metal-induced crystallization of a-Si:H”, Journal of the Electrochemical Society, Vol. 152, no. 5, G354 (2005).
    50.白木 靖寬, 吉田 貞史編著, 王建義編譯, "薄膜工程學", 全華科技圖書股份有限公司 (2006).
    51.Y, Huang and A.J. Rosakis, “Extension of Stoney’s formula to non-uniform temperature distributions in thin film/substrate systems. The case of radial symmetry”, Journal of the Mechanics and Physics of Solids Vol. 53, p.2483 (2005).
    52.S.J. Bull, D.S. Rickerby, J.C. Knight and T.F. Page, “High temperature mechanical properties of physical vapour deposited titanium nitride”, Surface Engineering, Vol. 8, p. 193 (1992).
    53.G.G. Stoney, “The tension of metallic films deposited by electrolysis. Proceedings of the royal society of lodeon. series A”, Mathematical and Physical Sciences, Vol. 82, no. 533, p. 172 (1909).
    54.P.A. Flinn, D.S. Gardner and W.D. Nix, “Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history” IEEE Transactions on Electron Devices, Vol. ED-34, no. 3, p. 689 (1987).
    55.A.K. Sinha and T.T. Sheng, “The temperature dependent stresses in aluminum films on oxidized silicon substrates”, Thin Solid Films, Vol. 48, p. 117 (1978).
    56.M.F. Ashby and H.J. Frost, “The kinetics of inelastic deformation above 0 K”, in Constitutive Equatins in Plasticiity, A. S. Argon, Ed. Cambridge, MA:MIT press, p. 117 (1975).
    57.M. Hershkovitz, I. A. Blech and Y. Komem, “Stress relaxation in thin aluminum films”, Thin Solid Films, Vol. 130, pp.87 (1985).
    58.G.E. Dieter ,(metric edition.), “Mechanical Metallurgy”, New York, McGraw-Hill (1988).
    59.捷東公司, “JEOL JSM-7001F Manual & Catalog” (2008).
    60.陳厚光, 張立, “掃描式電子顯微鏡中之背向電子繞射分析技術”, 科儀新知第二十七卷第六期 (2006).
    61.A.J. Schwartz, M. Kumar, and B.L. Adams, (Eds.) “Electron backscatter Diffraction in materials Science”, New York, Kluwer Academic (2000).
    62.陳力俊, “料電子顯微鏡學”, 行政院國家科學委員會精密儀器發展中心, 新竹台灣 (1994).
    63.汪建民主編, “材料分析”, 中國材料科學學會 (1998).
    64.E. Pihan, A. Slaoui, P. Roca I Cabarrocas and A. Focsa, “Polycrystalline silicon films by aluminium-induced crystallisation: growth process vs. silicon deposition method”, Thin solid Films, Vol. 451-452, p. 328 (2004).
    65.J.P. Schaffer, A. Saxena, S.D. Antolovich, T.H. Sanders and S.B. Warner, (ed.) “The science and design of engineering materials”, The Science and Design of Engineering Copyright by Richard D. lrwin, Inc. Chicage USA (1995).
    66.楊德仁,顏怡文,太陽能電池材料,五南圖書股份有限公司 (2008).
    67.A. Matsuda, “Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma”, Journal of Non-Crystalline Solids, Vol. 59-60, p. 767 (1993).
    68.K. Yamamoto, “Very thin film crystalline silicon solar cells on glass substrate fabricated at low temperature”, IEEE Transactions on Electron Devices, Vol. 46, no. 10, p. 2041 (1999).
    69.J.Y. Wang, D.He, Y.H. Zhao, and E.J. Mittemeijer, “Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon,” Applied Physics Letters, Vol. 88, p. 061910-1 (2006).
    70.J.R. Guillemet, B. Pieraggi, B. de-Mauduit and A. Claverie, “Crystallisation behaviour of amorphous thin Si films produced by low pressure chemical vapor deposition”, Solid State Phenomena, Vol. 37-38, p. 293 (1994).
    71.S. Kikuchi, “Diffraction of Cathode Rays by Mica”, Japanese Journal of Physics, vol. 5, p. 83 (1928).
    72.Y.N. Wen and J. M. Zhang, “Surface energy calculation of the fcc metals by using the MAEAM”, Solid State Communications, Vol. 144, p. 163 (2007).
    73.G. Kim and F. ajersch, “Surface energy and chemical characteristics of interfaces of adhesively bonded aluminium joints“, Journal of Materials Science, Vol. 29, p. 676 (1994).
    74.Y.H. Zhao, J.Y. Wang, and E.J. Mittemeijer, “Microstructural changes in amorphous Si/crystalline Al thin bilayer films upon annealing”, Applied Physics A-Materials Science & Processing, Vol. 79, p. 681 (2004).
    75.L. O’Reilly, K. Horan, P.J. McNally, N.S. Bennett, N.E.B. Cowern, A. Lankinen, B.J. Sealy, R.M. Gwilliam, T.C.Q. Noakes, and P. Beiley, “Constraints on micro-raman strain metrology for highly deped strained Si materials” Applied Physics Letters, Vol. 92, p. 233506-1 (2008).
    76.W.D. Nix, “Mechanical Properties of thin films”, Metallurgical Trans, Vol. A20, p. 2217 (1989).
    77.黃智杰,林仁輝,”原生氧化層與孔洞對奈米鋁金屬誘發結晶矽之影響”,國立成功大學-奈米科技暨微系統工程研究所,碩士論文 (2010).
    78.M. Albarghouti, H. Naseem and M. Al-Jassim, “TEM investigation of the role of a nano-oxide layer in aluminum-induced crystallization of a-Si:H”, Electrochemical and Solid-State Letters, Vol. 9, p. 225 (2006).
    79.C.F. Cheng, T.C. Leung, W.Y. Chan and M.C. Poon, “The effect of nickel thickness in nickel-induced lateral crystallization of amorphous Si”, IEEE Region 10 International Conference on Electrical and Electronic Technology, Singapore, Singapore, August, Vol. 19-22, p. 838 (2001).
    80.T.C. Leung, C.F. Cheng and M.C. Poon, “Poly silicon film formation by nickel-induced lateral crystallization and pulsed raped thermal annealing”, IEEE Region 10 International Conference on Electrical and Electronic Technology, Singapore, Singapore, August, Vol. 19-22, p. 388 (2001).
    81.A. Marwan i, A. Husam, N. Hameed, D. B. William and A. J. Mowafak, “The effects of an oxide layer on the kinetics of metal-induced crystallization of a-Si:H,” Journal of the Electrochemical Society, vol. 152, no. 5, p. G354 (2005).
    82.O. Nast, S. Brehme, D.H. Neuhaus and S. R.Wenham, “Polycrystalline silicon thin films on glass by aluminum-induced crystallization,” IEEE Transactions on Electron Devices, Vol. 46, no.10, p.2062 (1999).

    下載圖示 校內:2013-07-28公開
    校外:2013-07-28公開
    QR CODE