簡易檢索 / 詳目顯示

研究生: 謝昀阳
Hsieh, Yun-Yang
論文名稱: 鈦鉭金屬氮化物的鍍膜技術與性質研究
A study on the coatings and characteristics of Ti-Ta metal nitrides
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 鈦鉭合金薄膜鈦鉭氮薄膜多層膜結構抗腐蝕薄膜
外文關鍵詞: TiN, TaN, TiTaN, Multilayers, Corrosion resistance
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用反應式磁控濺鍍系統製備不同的氮化鈦、氮化鉭奈米薄膜以及兼具兩者特性的鈦鉭氮三元複合薄膜,並藉由改變薄膜堆疊輔助層與靶材種類等製程參數來討論不同薄膜微結構、相組成、表面形貌對電阻率及電化學性質之影響與關聯性。透過控制添加鈦輔助附著層以及增加背板偏壓使氮化物附著性增加並提升表面平整性及結晶型貌。完成後將這些薄膜以低掠角X光繞射儀分析其微結構與結晶相、掃描式電子顯微鏡觀察表面形貌、結合四點探針、表面粗度儀量測薄膜厚度與電阻率,最後利用恆電位儀與電化學交流阻抗分析儀分析薄膜的電化學性質探討其抗腐蝕特性。
    實驗結果顯示薄膜的沉積速率會隨著製程參數的變化而改變,偏壓上升後會使薄膜的緻密性增加但會降低薄膜厚度。薄膜微結構與表面形貌也會隨著偏壓增減而有所變化,此外TiN與TaN在氮氣流量比為10 %時,表現出薄膜繞射波峰強度降低的情況,代表此時的薄膜微結構呈現似非晶的狀態,且在此參數下的薄膜表面形貌也變得非常緻密,非晶的微結構也造成薄膜電阻上升。而結合TiN與TaN的TiTaN三元薄膜,則表現出十分穩定的薄膜微結構,使得薄膜性質與製程參數之間有較線性的變化。電化學交流阻抗結果顯示,TiTa金屬薄膜具有最大的阻抗值,而氮化薄膜則以Ti /TaN此組參數擁有最大的阻抗值,其原因與其薄膜表面形貌和微結構相關。整體而言,多層複合結構會使薄膜電阻上升,相較非晶的薄膜微結構與緻密的表面有助於薄膜抗腐蝕能力的提升。薄膜性質主要受薄膜微結構與表面形貌的影響,而鍍膜的平整性為影響結果之主要因素,並且可根據不同的用途調整適當的參數,在低電阻、高抗腐蝕能力等薄膜性質之間選擇,可以製備出多功能之奈米薄膜。

    The good properties of binary transition metal nitride films such as titanium nitride (TiN) and tantalum nitride (TaN) have been attracted. The combination of TiN and TaN is expected to create a multi-functional material. The ternary titanium tantalum nitride films with N2/(Ar+N2) gas flow ratios 10% is deposited the bi-layers structure by dc reactive magnetron co-sputtering on Si (100) substrates and SS316L. The effect of adding adhesive layer on the microstructure, morphology, electrical properties, and electrochemical properties of the Ti, Ta and TiTa nitride films are investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), four-probe method, potentiostatic, and electrochemical impedance spectroscopy, respectively. The microstructure of TiTaN films is more stable than TiN or TaN films. The change of resistivity of films with increasing when metal film becomes nitride film. Then the TiTaN bi-layers exhibited the good corrosion resistance and the SEM image of bi-layers morphology showed smoother. Our studies suggested that the single phase structure is benefit to electrical properties while the amorphous-like structure and denser morphology are benefit to corrosion resistance.

    摘要 I 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 第二章 文獻回顧與理論基礎 7 2-1 濺鍍原理與薄膜結構模型 7 2-1-1 反應式濺鍍薄膜原理 7 2-1-2 物理氣相沉積薄膜結構模型 8 2-2 鈦金屬與氮化鈦材料性質回顧 10 2-3 鉭金屬與氮化鉭材料性質回顧 11 2-4 鈦鉭合金與鈦鉭氮薄膜材料性質回顧 13 2-5 多層膜薄膜文獻回顧 14 2-6 材料腐蝕基礎理論與電化學分析方法 15 2-6-1 材料腐蝕基礎理論 15 2-6-2 極化曲線 16 2-6-3 電化學阻抗分析原理 18 第三章 實驗步驟與方法 22 3-1 實驗流程 22 3-2 實驗參數與材料 25 3-3 實驗與檢測儀器 28 3-3-1 反應式磁控濺鍍系統 28 3-3-2 微細表面測定儀 30 3-3-3 四點探針 32 3-3-4 低掠角X光繞射儀 34 3-3-5 高解析場發射掃描式電子顯微鏡 36 3-3-6 恆電位儀 39 3-3-7 電化學交流阻抗分析儀 41 第四章 實驗結果與討論 42 4-1 鈦鉭金屬與合金基本性質探討 42 4-1-1 薄膜微結構與表面形貌 43 4-1-2 薄膜表面電性分析 46 4-1-3 薄膜電化學性質 48 4-2 鈦鉭金屬與氮化物基本性質探討 54 4-2-1 薄膜微結構與表面形貌 55 4-2-2 薄膜表面電性分析 60 4-2-3 薄膜電化學性質 61 4-3 鈦鉭金屬與合金氮化物雙層膜基本性質探討 66 4-3-1 薄膜微結構與表面形貌 66 4-3-2 薄膜表面電性分析 69 4-3-3 薄膜電化學性質 70 第五章 結論與未來展望 75 5-1 結論 75 5-2 未來展望 78 5-3 本文貢獻 80

    [1] K. Holmberg, H. Ronkainen, and A. Matthews, "Tribology of thin coatings," Ceramics International, vol. 26, pp. 787-795, 2000.
    [2] C. C. Chang, J. S. Jeng, and J. S. Chen, "Microstructural and electrical characteristics of reactively sputtered Ta-N thin films," Thin Solid Films vol. 413, pp. 46-51, 2002.
    [3] D. P. Zhu, X. Q. Lin, and L. Luo, "Integration of Ta-N Thin Film Resistors on Anodic Alumina MCM-D Substrate," Journal of Electronic Packaging, vol. 131, Mar 2009.
    [4] J. Nazon, B. Fraisse, J. Sarradin, S. G. Fries, J. C. Tedenac, and N. Frety, "Copper diffusion in TaN-based thin layers," Applied Surface Science, vol. 254, pp. 5670-5674, Jul 15, 2008.
    [5] C. L. Liu, P. K. Chu, G. Q. Lin, and M. Qi, "Anti-corrosion characteristics of nitride-coated AISI 316L stainless steel coronary stents," Surface & Coatings Technology, vol. 201, pp. 2802-2806, Dec 4 2006.
    [6] M. Geetha, D. Durgalakshmi, and R. Asokamani, "Biomedical Implants:Corrosion and its Prevention-A Review," Recent Patents on Corrosion Science, vol. 2, pp. 40-54, 2010.
    [7] O. Knotek, F. Loffler, and G. Kramer, "Deposition, Properties and Performance Behavior of Carbide and Carbonitride Pvd Coatings," Surface & Coatings Technology, vol. 61, pp. 320-325, Dec 3 1993.
    [8] S. PalDey and S. C. Deevi, "Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 342, pp. 58-79, Feb 15 2003.
    [9] L. Wang, D. O. Northwood, X. Nie, J. Housden, E. Spain, A. Leyland, et al., "Corrosion properties and contact resistance of TiN, TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments," Journal of Power Sources, vol. 195, pp. 3814-3821, Jun 2010.
    [10] X. Cui, G. Jin, J. Hao, J. Li, and T. Guo, "The influences of Si content on biocompatibility and corrosion resistance of Zr-Si-N films," Surface & Coatings Technology, vol. 228, pp. S524-S528, Aug 15 2013.
    [11] H. T. Hsueh, W. J. Shen, M. H. Tsai, and J. W. Yeh, "Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr) 100-xN x," Surface & Coatings Technology, vol. 206, pp. 4106-4112, 25 2012.
    [12] J. A. Thornton, "Influence of Apparatus Geometry and Deposition Conditions on Structure and Topography of Thick Sputtered Coatings," Journal of Vacuum Science & Technology, vol. 11, pp. 666-670, 1974 1974.
    [13] J. E. Sundgren, "Structure and Properties of TiN Coatings," Thin Solid Films, vol. 128, pp. 21-44, 1985.
    [14] C. Kaufmann, J. Baumann, T. Gessner, T. Raschke, M. Rennau, and N. Zichner, "Electrical Characterization of Reactively Sputtered Tin Diffusion Barrier Layers for Copper Metallization," Applied Surface Science, vol. 91, pp. 291-294, Oct 1995.
    [15] K. D. Vargheese, G. M. Rao, T. V. Balasubramanian, and S. Kumar, "Preparation and characterization of TiN films by electron cyclotron resonance (ECR) sputtering for diffusion barrier applications," Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 83, pp. 242-248, Jun 21 2001.
    [16] M. I. Jones, I. R. McColl, and D. M. Grant, "Effect of substrate preparation and deposition conditions on the preferred orientation of TiN coatings deposited by RF reactive sputtering," Surface & Coatings Technology, vol. 132, pp. 143-151, Oct 23 2000.
    [17] W. Huiqiang, S. Weilian, X. Yanqiu, and D. TingTing, "Study on the Color of TiN Films on the Aluminium Alloys Surface," Applied Mechanics and Materials, vol. 252, pp. 250-254, 2013 2013.
    [18] H. A. Ching, D. Choudhury, M. J. Nine, and N. A. Abu Osman, "Effects of surface coating on reducing friction and wear of orthopaedic implants," Science and Technology of Advanced Materials, vol. 15, Feb 2014.
    [19] C. K. Chung, H. C. Chang, S. C. Chang, M. W. Liao, and C. C. Lai, "Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti-Si-N thin films using magnetron reactive co-sputtering," Journal of Alloys and Compounds, vol. 537, pp. 318-322, Oct 5 2012.
    [20] S. Veprek and M. J. G. Veprek-Heijman, "Industrial applications of superhard nanocomposite coatings," Surface & Coatings Technology, vol. 202, pp. 5063-5073, Jul 30 2008.
    [21] H. Hasegawa, A. Kimura, and T. Suzuki, "Microhardness and structural analysis of (TI,AI)N, (Ti,Cr)N, (Ti,Zr)N and (TI,V)N films," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 18, pp. 1038-1040, May-Jun 2000.
    [22] A. Hoerling, J. Sjolen, H. Willmann, T. Larsson, M. Oden, and L. Hultman, "Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films," Thin Solid Films, vol. 516, pp. 6421-6431, Jul 31 2008.
    [23] D. B. Lee, M. H. Kim, Y. C. Lee, and S. C. Kwon, "High temperature oxidation of TiCrN coatings deposited on a steel substrate by ion plating," Surface & Coatings Technology, vol. 141, pp. 232-239, Jun 18 2001.
    [24] A. A. Navid and A. M. Hodge, "Nanostructured alpha and beta tantalum formation-Relationship between plasma parameters and microstructure," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 536, pp. 49-56, Feb 28 2012.
    [25] X. Sun, E. Kolawa, J. S. Chen, J. S. Reid, and M. A. Nicolet, "Properties of Reactively Sputter-Deposited Ta-N Thin-Films," Thin Solid Films, vol. 236, pp. 347-351, Dec 15 1993.
    [26] C. S. Shin, D. Gall, Y. W. Kim, N. Hellgren, I. Petrov, and J. E. Greene, "Development of preferred orientation in polycrystalline NaCl-structure delta-TaN layers grown by reactive magnetron sputtering: Role of low-energy ion surface interactions," Journal of Applied Physics, vol. 92, pp. 5084-5093, Nov 1 2002.
    [27] J. Nazon, J. Sarradin, V. Flaud, J. C. Tedenac, and N. Frety, "Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering," Journal of Alloys and Compounds, vol. 464, pp. 526-531, Sep 22 2008.
    [28] S. M. Cardonne, P. Kumar, C. A. Michaluk, and H. D. Schwartz, "Tantalum and Its Alloys," International Journal of Refractory Metals & Hard Materials, vol. 13, pp. 187-&, 1995 1995.
    [29] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki, "Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium," Biomaterials, vol. 22, pp. 1253-1262, Jun 2001.
    [30] Y. X. Leng, H. Sun, P. Yang, J. Y. Chen, J. Wang, G. J. Wan, et al., "Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering," Thin Solid Films, vol. 398, pp. 471-475, Nov 2001.
    [31] Y. L. Zhou, M. Niinomi, and T. Akahori, "Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications," Materials Science and Engineering: A, vol. 371, pp. 283-290, 2004.
    [32] Y. L. Zhou, M. Niinomi, T. Akahori, H. Fukui, and H. Toda, "Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications," Materials Science and Engineering: A, vol. 398, pp. 28-36, 2005.
    [33] Y.-L. Zhou and M. Niinomi, "Microstructures and mechanical properties of Ti–50mass% Ta alloy for biomedical applications," Journal of Alloys and Compounds, vol. 466, pp. 535-542, 2008.
    [34] Y. L. Zhou and M. Niinomi, "Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys for biomedical applications," Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol. 29, pp. 1061-1065, Apr 30 2009.
    [35] G. M. Matenoglou, L. E. Koutsokeras, C. E. Lekka, G. Abadias, C. Kosmidis, G. A. Evangelakis, et al., "Structure, stability and bonding of ternary transition metal nitrides," Surface & Coatings Technology, vol. 204, pp. 911-914, Dec 25 2009.
    [36] X. Liu, G. J. Ma, G. Sun, Y. P. Duan, and S. H. Liu, "The influence of Ti doping on the mechanical properties of TaN film," Surface & Coatings Technology, vol. 212, pp. 128-133, Nov 2012.
    [37] G. Abadias, L. E. Koutsokeras, S. N. Dub, G. N. Tolmachova, A. Debelle, T. Sauvage, et al., "Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N," Journal of Vacuum Science & Technology A, vol. 28, pp. 541-551, Jul-Aug 2010.
    [38] J. W. Matthwes and A. E. Blakeskee, "Defects in epitaxial multilayers," Journal of Crystal Growth 27, I 18-125 1974.
    [39] R. Manaila, A. Devenyi, D. Biro, L. David, P.B. Barna, A. Kovacs, "Multilayer TiAlN coatings with composition gradient", Surface and Coatings Technology 151 –152, 21–25 2002
    [40] T. Ana, M. Wen, L.L.Wang, C.Q. Hu, H.W. Tian,W.T. Zheng,, "Structures, mechanical properties and thermal stability of TiN/SiNx multilayer coatings deposited by magnetron sputtering", Journal of Alloys and Compounds 486, 515–520 2009
    [41] Chi-Lung Chang, Chao-Te Lin, Pi-Chuen Tsai, Wei-Yu Ho, Da-Yung Wang, "Influence of bias voltages on the structure and wear properties of TiSiN coating synthesized by cathodic arc plasma evaporation", Thin Solid Films 516, 5324–5329 2008.
    [42] Chenglong Liu, Paul K. Chu, Guoqiang Lin, Dazhi Yang," Effects of Ti/TiN multilayer on corrosion resistance of nickel–titanium orthodontic brackets in artificial saliva", Corrosion Science 49, 3783–3796 2007.
    [43] X. Luo and J. J. Davis, "Electrical biosensors and the label free detection of protein disease biomarkers," Chemical Society Reviews, vol. 42, pp. 5944-5962, 2013.
    [44] L. R. F. Allen J. Bard, Electrochemical Methods: Fundamentals and Applications 2nd ed.: Wiley, 2001.
    [45] J. Chakraborty, K. Kumar, R. Ranjan, S. G. Chowdhury, and S. R. Singh, "Thickness-dependent fcc-hcp phase transformation in polycrystalline titanium thin films," Acta Materialia, vol. 59, pp. 2615-2623, Apr 2011.
    [46] N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, "Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques," Bulletin of Materials Science, vol. 36, pp. 807-812, Oct 2013.
    [47] R. A. Silva, M. Walls, B. Rondot, M. D. Belo, and R. Guidoin, "Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery," Journal of Materials Science-Materials in Medicine, vol. 13, pp. 495-500, May 2002.
    [48] Y. Cheng, W. Cai, H. T. Li, Y. F. Zheng, and L. C. Zhao, "Surface characteristics and corrosion resistance properties of TiNi shape memory alloy coated with Ta", Surf Coat Tech, vol. 186, pp. 346-352, 2004.
    [49] H. Chunlin, Z. Jinlin, W. Jianming, M. Guofeng, Z. Dongliang, and C. Qingkui, "Effect of structural defects on corrosion initiation of TiN nanocrystalline films," Applied Surface Science, vol. 276, pp. 667-671, 1 2013.
    [50] W. H. Lee, J. Lin, and C. Lee, "Characterization of tantalum nitride films deposited by reactive sputtering of Ta in N2/Ar gas mixtures," Materials Chemistry and Physics, vol. 68, pp. 266-271, 2001.
    [51] J. H. Tyan and J. T. Lue, "Grain boundary scattering in the normal state resistivity of superconducting NbN thin films", Journal of Applied Physics, vol. 75, pp. 325-31, 1994.
    [52] S. Amand, M. Musiani, M. E. Orazem, N. Pebere, B. Tribollet, and V. Vivier, "Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings", Electrochimica Acta, vol. 87, pp. 693-700, 2013.
    [53] V. E. Selvi, V. K. W. Grips, and H. C. Barshilia, "Electrochemical behavior of superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive DC unbalanced magnetron sputtering", Surf Coat Tech, vol. 224, pp. 42-48, 2013.
    [54] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, "Reactive-Sputter-Deposited TiN Films on Glass Substrates", Thin Solid Films, vol. 197, pp. 117-128, 1991.

    無法下載圖示 校內:2022-05-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE