簡易檢索 / 詳目顯示

研究生: 李晟豪
Li, Cheng-Hau
論文名稱: 雙液晶層結構具有快速切換共軸雙焦距特性與較佳影像能力
Two-LC-layer (TLCL) liquid crystal lenses with capabilities of fast switching of coaxial bifocuses and better imaging performance
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 64
中文關鍵詞: 液晶圓孔型液晶透鏡焦距共軸雙焦
外文關鍵詞: Liquid crystals, Hole-patterned electrode LC lens, Focusing power, Coaxial bi-focus
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究提出提升圓孔型液晶透鏡性能之結構設計,以實驗與模擬驗證其光學能力,利用雙層液晶層(TLCL)圓孔電極結構所製作之液晶透鏡相較於一般圓孔型液晶透鏡之結果,TLCL液晶透鏡有明顯較短焦距(亦即較大的focusing power)。此外,分析不連續線形成原因與避免其產生之方法也是研究重點。最後,本論文以TLCL結構製作液晶透鏡具有可電控切換共軸雙焦態與單焦態模式之特性,且最短焦距為3.24 cm。

    更進一步,為了使TLCL液晶透鏡具有較佳成像品質,於是利用雙電壓調控方法評估透鏡之波前像差特性,以獲得較佳之影像能力。目前,最佳的電壓操作條件可使TLCL液晶透鏡達到0.208 λrms的波前像差,其成像能力與未修正之透鏡相比可得到較佳的影像品質。最後,結合一90度扭轉角向列型液晶盒於優化的TLCL液晶透鏡進行快速切換雙焦距以增加景深能力之觀察。

    In this thesis, an electrically tunable liquid crystal lens with a hole-patterned electrode and two liquid crystal layers (TLCL) is demonstrated to show characteristics of switching bi-focus/single-focus modes and imaging performance. In addition, larger focusing power is achieved in the TLCL lens when comparing with the general hole-patterned electrode LC lenses. Furthermore, an optimal TLCL lens electrically operated with two independent voltages in two individual LC layers achieves a minimum wavefront error of 0.208λrms, which is also combined with a 90° twisted nematic (TN) LC cell to show fast switching bi-focus for the purpose of viewing depth enhancement.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 液晶簡介與實驗原理 5 2.1 液晶簡介 5 2.2 光聚合物對液晶之影響 7 2.3 折射率梯度透鏡 9 2.4 圓孔型液晶透鏡 9 2.4.1 液晶透鏡原理 9 2.4.2 液晶透鏡焦距 10 2.4.3 干涉條紋與二次曲線 11 2.4.4 不連續線形成原因 14 第三章 實驗裝置與材料 15 3.1 實驗材料與設備 15 3.1.1 液晶 15 3.1.2 光聚合物 16 3.2 液晶透鏡製作 17 3.2.1 樣品使用設備與材料 17 3.2.2 液晶透鏡製作步驟 19 3.3 實驗裝置與量測 25 3.3.1 量測干涉條紋 25 3.3.2 焦距量測 27 第四章 實驗結果與討論 29 4.1 雙層孔洞電極液晶透鏡 29 4.1.1 雙層孔洞結構與傳統液晶透鏡比較 29 4.1.2 雙層孔洞結構與傳統液晶透鏡模擬分析 33 4.1.3 雙層孔洞液晶透鏡之介電質厚度比較 37 4.2 雙層孔洞電極液晶透鏡不連續線分析 38 4.3 共軸雙焦液晶透鏡 40 4.3.1 參數選擇 40 4.3.2 共軸雙焦干涉條紋與焦距分析與成像 41 4.4 雙層結構液晶透鏡之波前像差分析與改善 44 4.5 快速切換雙焦距與共軸雙焦液晶透鏡 52 4.5.1 參數選擇 52 4.5.2 偏振無關液晶透鏡 55 4.5.3 快速切換雙焦距 56 第五章 結論與未來展望 60 5-1. 結論 60 5-2. 未來展望 61 參考文獻 62

    [1]M. Born and E. Wolf: Principles of Optics, Pergamon Press, Oxford, p. 468, 1957.
    [2]Chien C. Y.; Hsu C. J.; Chen Y. W.; Tseng S. H.; Sheu C. R. Holographic polymer networks formed in liquid crystal phase modulators via a He-Ne laser to achieve ultra-fast optical response. Opt. Express 2016, 24, 7534–7542.
    [3]Chen H.; Peng F.; Luo Z.; Xu D.; Wu S. T.; Li M. C.; Lee S. L.; Tsai W. C.High performance liquid crystal displays with a low dielectric constant material. Opt. Mater. Express 2014, 4, 2262–2273
    [4]B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.2002, 41(Part 2, No. 11A), L1232–L1233
    [5]L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, "Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings," Appl. Opt 2013, 52, 1978-1986.
    [6]Ye M.; Sato S. Optical properties of liquid crystal lens of any size. Jpn. J. Appl. Phys. 2002, 41, L571-L573.
    [7]Ye M.; Wang B.; Sato S. Liquid-crystal lens with a focal length that is variable in a wide range. Appl. Opt. 2004, 43, 6407–6412.
    [8]Hsu C. J.; Sheu C. R. Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization. Opt. Express 2011, 19, 14999–15008.
    [9]Kao Y. Y.; Chao P. C. P. A New dual-frequency liquid crystal lensWith ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time.2011, 11, 5402–5415.
    [10]Ye M.; Wang B.; Sato S. Driving of liquid crystal lens without disclination occurring by applying in-plane electric field. Jpn. J. Appl. Phys. 2003, 42, 5086-5089.
    [11]G. Shibuya, N. Okuzawa, and M. Hayashi, “New application of liquid crystal lens of active polarized filter for micro camera,” Opt. Express .2012, 20, 27520–27529.
    [12]T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys.2007, 46(5A), 2926–2931
    [13]M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.2013, 52(4R), 042501
    [14]Galstian T, Asatryan K, Presniakov V, Zohrabyan A, Tork A, Bagramyan A, Careau S, Thiboutot M, Cotovanu M “High optical quality electrically variable liquid crystal lens using an additional floating electrode”. Opt Lett.2016, 41:3265–3268
    [15]Hsu CJ, Jhang JJ, Huang CY. Large aperture liquidcrystal lens with an imbedded floating ring electrode.Opt Express. 2016;24:16722–16731
    [16]Liu S.; Hua H. Time-multiplexed dual-focal plane head-mounted display with a liquid lens. Opt. Lett. 2009, 34, 1642–1644.
    [17]Shen X.; Wang Y. J.; Chen H. S.; Xiao X.; Lin Y. H.; Javidi B. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens. Opt. Lett. 2015, 40, 538–541.
    [18]H. C. Lin and Y. H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.2011,. 98(8), 083503
    [19]Toralf Scharf, “Polarized Ligh in Liquid Crystal and Polymers,” Chap. 6, John Wiley & Sons (2007)
    [20]F.C. Frank, “On the theory of liquid crystals,” Faraday Soc., Volume 25, Number 19 (1958)
    [21]J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi and S. H. Lee, " Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer-stabilized vertical alignment liquid crystal displays," J. Phys. D: Appl. Phys.2011, 44, 325104
    [22]D.E. Lucchetta, R. Karapinar, A. Manni, and F. Simon, Phase-only modulation by nanosized polymer-dispersed liquid crystals, J Appl Phys.2002, 91, 6060–6065.
    [23]Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 11 , John Wiley & Sons (2006)
    [24]張繼鴻,"發展一可用電壓調控焦距的液晶元件,"私立中原大學應用物理研究所碩士論文,(2013)
    [25]Ye M.; Wang B.; Sato S. Liquid-crystal lens with a focal length that is variable in a wide range. Appl. Opt. 2004, 43, 6407–6412
    [26]Lam-Choon Khoo, “Liquid Crystals,” 2nd. Edition, Chap. 1, John Wiley & Sons (2007)
    [27]張仕仁,“用雙丙烯酸酯薄膜記錄氦氖雷射全像干涉光場光訊息之研究,國立中山大學光電工程學系碩士論文(2011)
    [28]Robert Allen Ramsey, “Holographic patterning of polymer dispersed liquid crystal materials for diffractive optics elements,” Ph. D. dissertation, University of Texas at arlington (2006)
    [29]Hsu C. J.; Jhang J. J.; Huang C. Y. Large aperture liquid crystal lens with an imbedded floating ring electrode. Opt. Express 2016, 24, 16722–16731.
    [30]張延任,“以額外介電層與非對稱水平配向法製作無不連續線之液晶透鏡陣列暨其應用於積分成像系統研究,國立成功大學光電工程與科學系碩士論文(2011)
    [31]R. El-Maksoud, L. Wang, J. M. Sasian, and V. S. Valencia, “Depth of field estimation: theory, experiment, and application,” Proc. SPIE.2009, 7429, 74290W, 74290W-12
    [32]J. Kim, S. W. Min and B. Lee, "Viewing region maximization of an integral floating display through location adjustment of viewing window," Opt. Express. 15, 13023-13034, (2007)
    [33]Li L.; Bryant D.; Heugten T. V.; Bos P. J. Near-diffraction-limited and low-haze electro optical tunable liquid crystal lens with floating electrodes. Opt. Express 2013, 21, 8371–8381.

    無法下載圖示 校內:2022-08-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE