簡易檢索 / 詳目顯示

研究生: 黎世翔
Li, Shi-Shiang
論文名稱: 展弦比對具導緣突節翼形性能之影響
The Effect of Aspect Ratio on the Performance of Airfoil with Protuberances on Leading Edges
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 94
中文關鍵詞: 翼形導緣突節展弦比
外文關鍵詞: airfoil, leading edge, protuberances, aspect ratio
相關次數: 點閱:93下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討展弦比對導緣具有突節外形之翼形性能上的影響。本文使用 NACA0012做為導緣變化之母體,以橢圓方程式及正弦波定義翼形導緣突節,設計三種展弦比(1,2,3) 三種不同形式之導緣突節變化,於低速風洞中進行翼形性能實驗及表面油流實驗,探討分析實驗之結果並比較性能上之差異。根據實驗結果分析,當展弦比為1時,失速延遲現象最明顯,可用攻角範圍比起高展弦之翼形更為廣泛。導緣突節對於升力上無明顯增加,但阻力部分卻明顯降低,尤其導緣突節之振幅越大,對於性能提升效果最為顯著。表面油流實驗結果顯示,NACA0012於失速後翼中央紊亂情況非常明顯,有突節翼形於翼中央流場情況較為整齊,其流場分離情形明顯延遲,可給予翼形更多的上升動量,可由兩者差異初步推測為導緣突節翼延遲失速並降少阻力之原因。

    This study investigated the effect of aspect ratio and shape of protuberances on the performance of airfoil with protuberances on leading edge. NACA0012 foil is used for modifying the leading edge with three different forms and three aspect ratios (1, 2, 3). The experiment of the airfoils was carried out in a low-speed wind tunnel, including airfoil performance experiments and visualization of airfoil surface flow field. The results of performance experiments show that when the aspect ratio equal to 1, the stall-delay phenomenon is very clear. It means that it is more useful than the high AR foil at high attack angle. The airfoil performance with protuberances on leading edge has no significant increase in lift, but the drag was reduced. The most significant effect for performance took place for the foil with longest amplitude of the protuberances. From the flow visualization results, we can see that the NACA0012 foil’s flow field becomes very turbulent on the wing surface after stall angle. But the protuberance foil’s flow field distribution was regular. From the difference between these two results, one could conclude the reason why the leading edge protuberance delayed stall and reduce the drag.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 XIV 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.3研究目的與架構 15 第二章 翼形幾何與製作 17 2.1翼形幾何 17 2.1.1翼形性能實驗之無因次化參數及因次分析 17 2.1.2翼形導緣幾何 19 2.2翼形製作加工 28 2.2.1翼型繪製 28 2.2.2翼型加工 31 第三章 翼型性能實驗方法與流場可視化 33 3.1翼形性能實驗儀器及設備 33 3.1.1風洞 33 3.1.2皮托管及壓力轉換器 35 3.1.3六分力平衡儀 36 3.14類比/數位訊號轉換器 37 3.1.5攻角控制器 37 3.2翼形性能實驗流程 38 3.3翼形性能實驗條件 41 3.4翼形性能實驗儀器校正與誤差分析 42 3.4.1六分平衡儀校正 42 3.4.2皮托管校正 44 3.4.3誤差分析 44 3.5流場可視化 47 3.5.1表面油流實驗設備及吹試劑 47 3.5.2表面油流實驗實驗流程 49 3.5.3表面油流實驗實驗條件 50 第四章 實驗結果與討論 52 4.1翼形性能實驗結果 52 4.2流場可視化實驗結果 68 4.3實驗結果分析與討論 76 4.3.1展弦比對翼形性能之影響 76 4.3.2導緣突節對翼形性能之影響 77 4.3.3實驗結果討論 78 第五章 結論與未來展望 80 5.1結論 80 5.2未來展望 81 參考文獻 82 附錄 85 自述 94

    [1] Forbes, P., 張雨青譯,學蜘蛛人趴趴走-受大自然啟發的仿生科技,遠流出版股份有限公司,台北,2007年。
    [2] Miklosovic, D. S.; Murray, M. M.; Howle, L. E., Experimental evaluation of sinusoidal leading edges, Journal of Aircraft, Vol. 44, No. 4, pp. 1404–1407, 2007.
    [3] Peacock, T.; and Bradley, E., Going with (or Against) the Flow. Science, Vol. 320, pp.1302–1303, 2008.
    [4] Fish, F. E.; and Battle, J. M., Hydrodynamic design of the humpback whale flipper. Journal of Morphology, 225, pp. 51–60, 1995.
    [5] Bushnell, D. M. ; and Moore, K. J., Drag Reduction in Nature. Annual Review of Fluid Mechanics, Vol. 23 , pp. 65–79, 1991.
    [6] Miklosovic, D. S.; Murray, M. M.; Howle, L. E. and Fish, F. E., Leading edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16(5), pp. L38–L42, 2004.
    [7] Levshin, A.; Custodio, D.; Henoch, C. and Johari. H., Effects of leading edge protuberances on airfoil performance. AIAA Journal, Vol. 45, No. 11, pp. 2634–2642, 2007.
    [8] van Nierop, E. A.; Alben, S.; and Brenner, M. P., How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model, Physical Review Letters, Vol. 100, No. 5, pp. 054502-1–054502-4, 2008.
    [9] Weber, P. W.; Howle, L. E.; and Murray, M. M., Lift, Drag, and cavitation onset on rudders with leading-edge tubercles, Marine Technology, Vol. 47, No. 1, pp. 27–36, 2010.
    [10] Watts, P.; and Fish, F. E., The influence of passive, leading edge tubercles on wing performance. In Proc. 12th UUST, Durham, New Hampshire, 2001.
    [11] Hugo T, C. P.; and Kobayashi, H. M., Numerical Study of stall delay on humpback whale flippers, paper 2008-0584, 46th AIAA Aerospace Sciences Meeting and Exhibit, 7–10 January, 2008.
    [12] Lowry, J. G.; Polhamus, E. C., A Method For Predictind Lift Increments Due To Flap Deflection at Low Angles of Attack Incompressible Flow, NACA TN3911, 1957.
    [13] Torres ,G. E.; Mueller, T. J., Low-Aspect-Ratio Wing Aerodynamics at Low Reynolds Numbers, AIAA Journal, Vol. 42, No. 5, pp.865–873,2004.
    [14] Abbott, I. H.; Von Doenhoff, A. E., Theory of Wing Sections Including a Summary of Airfoil Data, Dover Publication, Inc., New York, 1959.
    [15] Pope, A.; Ray, W. H., Low-Speed Wind Tunnel Testing, 2nd ed., Wiley, New York, 1984.
    [16] 劉益仲,低雷諾數下三維薄翼之低展弦比效應之研究,國立成功大學航空太空工程研究所碩士論文,2005年。
    [17] 林建和,導緣突節對B系列螺槳之性能影響之初步研究,國立成功大學系統及船舶機電工程研究所,2009年。
    [18] 張嘉原,有限翼展在低雷諾數下之氣動力研究,國立成功大學航空太空工程研究所碩士論文,2002年。
    [19] 黃振宇,渦漩對翼片性能影響之研究,國立成功大學造船與船舶機械工程研究所碩士論文,2002年。
    [20] Vogel, S., 楊永鈺譯,貓掌與彈弓:當自然設計遇上人類科技,先覺出版股份有限公司,台北,2000年。
    [網站]
    [21] 生技時代雜誌媒體授權內容,NO. 23,
    http://www.bpipo.org.tw/media/bioera/2003_9/index.html (檢索日期: 2010年6月15日)

    下載圖示 校內:2011-08-23公開
    校外:2011-08-23公開
    QR CODE