| 研究生: |
黎世翔 Li, Shi-Shiang |
|---|---|
| 論文名稱: |
展弦比對具導緣突節翼形性能之影響 The Effect of Aspect Ratio on the Performance of Airfoil with Protuberances on Leading Edges |
| 指導教授: |
陳政宏
Chen, Jeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 翼形 、導緣 、突節 、展弦比 |
| 外文關鍵詞: | airfoil, leading edge, protuberances, aspect ratio |
| 相關次數: | 點閱:93 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討展弦比對導緣具有突節外形之翼形性能上的影響。本文使用 NACA0012做為導緣變化之母體,以橢圓方程式及正弦波定義翼形導緣突節,設計三種展弦比(1,2,3) 三種不同形式之導緣突節變化,於低速風洞中進行翼形性能實驗及表面油流實驗,探討分析實驗之結果並比較性能上之差異。根據實驗結果分析,當展弦比為1時,失速延遲現象最明顯,可用攻角範圍比起高展弦之翼形更為廣泛。導緣突節對於升力上無明顯增加,但阻力部分卻明顯降低,尤其導緣突節之振幅越大,對於性能提升效果最為顯著。表面油流實驗結果顯示,NACA0012於失速後翼中央紊亂情況非常明顯,有突節翼形於翼中央流場情況較為整齊,其流場分離情形明顯延遲,可給予翼形更多的上升動量,可由兩者差異初步推測為導緣突節翼延遲失速並降少阻力之原因。
This study investigated the effect of aspect ratio and shape of protuberances on the performance of airfoil with protuberances on leading edge. NACA0012 foil is used for modifying the leading edge with three different forms and three aspect ratios (1, 2, 3). The experiment of the airfoils was carried out in a low-speed wind tunnel, including airfoil performance experiments and visualization of airfoil surface flow field. The results of performance experiments show that when the aspect ratio equal to 1, the stall-delay phenomenon is very clear. It means that it is more useful than the high AR foil at high attack angle. The airfoil performance with protuberances on leading edge has no significant increase in lift, but the drag was reduced. The most significant effect for performance took place for the foil with longest amplitude of the protuberances. From the flow visualization results, we can see that the NACA0012 foil’s flow field becomes very turbulent on the wing surface after stall angle. But the protuberance foil’s flow field distribution was regular. From the difference between these two results, one could conclude the reason why the leading edge protuberance delayed stall and reduce the drag.
[1] Forbes, P., 張雨青譯,學蜘蛛人趴趴走-受大自然啟發的仿生科技,遠流出版股份有限公司,台北,2007年。
[2] Miklosovic, D. S.; Murray, M. M.; Howle, L. E., Experimental evaluation of sinusoidal leading edges, Journal of Aircraft, Vol. 44, No. 4, pp. 1404–1407, 2007.
[3] Peacock, T.; and Bradley, E., Going with (or Against) the Flow. Science, Vol. 320, pp.1302–1303, 2008.
[4] Fish, F. E.; and Battle, J. M., Hydrodynamic design of the humpback whale flipper. Journal of Morphology, 225, pp. 51–60, 1995.
[5] Bushnell, D. M. ; and Moore, K. J., Drag Reduction in Nature. Annual Review of Fluid Mechanics, Vol. 23 , pp. 65–79, 1991.
[6] Miklosovic, D. S.; Murray, M. M.; Howle, L. E. and Fish, F. E., Leading edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16(5), pp. L38–L42, 2004.
[7] Levshin, A.; Custodio, D.; Henoch, C. and Johari. H., Effects of leading edge protuberances on airfoil performance. AIAA Journal, Vol. 45, No. 11, pp. 2634–2642, 2007.
[8] van Nierop, E. A.; Alben, S.; and Brenner, M. P., How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model, Physical Review Letters, Vol. 100, No. 5, pp. 054502-1–054502-4, 2008.
[9] Weber, P. W.; Howle, L. E.; and Murray, M. M., Lift, Drag, and cavitation onset on rudders with leading-edge tubercles, Marine Technology, Vol. 47, No. 1, pp. 27–36, 2010.
[10] Watts, P.; and Fish, F. E., The influence of passive, leading edge tubercles on wing performance. In Proc. 12th UUST, Durham, New Hampshire, 2001.
[11] Hugo T, C. P.; and Kobayashi, H. M., Numerical Study of stall delay on humpback whale flippers, paper 2008-0584, 46th AIAA Aerospace Sciences Meeting and Exhibit, 7–10 January, 2008.
[12] Lowry, J. G.; Polhamus, E. C., A Method For Predictind Lift Increments Due To Flap Deflection at Low Angles of Attack Incompressible Flow, NACA TN3911, 1957.
[13] Torres ,G. E.; Mueller, T. J., Low-Aspect-Ratio Wing Aerodynamics at Low Reynolds Numbers, AIAA Journal, Vol. 42, No. 5, pp.865–873,2004.
[14] Abbott, I. H.; Von Doenhoff, A. E., Theory of Wing Sections Including a Summary of Airfoil Data, Dover Publication, Inc., New York, 1959.
[15] Pope, A.; Ray, W. H., Low-Speed Wind Tunnel Testing, 2nd ed., Wiley, New York, 1984.
[16] 劉益仲,低雷諾數下三維薄翼之低展弦比效應之研究,國立成功大學航空太空工程研究所碩士論文,2005年。
[17] 林建和,導緣突節對B系列螺槳之性能影響之初步研究,國立成功大學系統及船舶機電工程研究所,2009年。
[18] 張嘉原,有限翼展在低雷諾數下之氣動力研究,國立成功大學航空太空工程研究所碩士論文,2002年。
[19] 黃振宇,渦漩對翼片性能影響之研究,國立成功大學造船與船舶機械工程研究所碩士論文,2002年。
[20] Vogel, S., 楊永鈺譯,貓掌與彈弓:當自然設計遇上人類科技,先覺出版股份有限公司,台北,2000年。
[網站]
[21] 生技時代雜誌媒體授權內容,NO. 23,
http://www.bpipo.org.tw/media/bioera/2003_9/index.html (檢索日期: 2010年6月15日)