簡易檢索 / 詳目顯示

研究生: 宋狄文
Sung, Ti-Wen
論文名稱: 高靈敏核殼結構量子點於環境感測之研究
The Study of Highly Sensitive Core-Shell Quantum Dots for Environment Sensing
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 87
中文關鍵詞: 量子點核-殼奈米粒子金屬離子氨氣氧氣溶膠-凝膠
外文關鍵詞: quantum dots, core-shell, metal ions, ammonia vapor, oxygen, sol-gel
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來以量子點(QDs)做為光學感測材料已廣泛被應用於生物醫學領域中,量子點的光學特性具有寬廣的激發波長、狹窄的放射光與耐光漂白等有優點,另外在單一光源激發下,量子點會隨粒徑大小而有不同的放射光,因此可以同時滿足高靈敏檢測和長時間動態監測的需要。利用量子點界面與環境待測物之間的電子轉移轉變為螢光訊號來檢測待測之濃度,目前普遍用於生理與環境分析應用也漸漸受到重視。
    本研究發展一種高性能光纖式銅離子感測器,此技術是利用熱裂解的方法合成出量子點(CdSe/ZnS),以及利用微乳化 (microemusion)方法將奈米粒子包覆於在silica particles中形成 核-殼奈米粒子(core-shell nanoparticles),最後將核-殼奈米粒子加入sol-gel matrix中再將之塗佈在光纖端面。由光強度的變化我們可以定量出溶液中的銅離子濃度。本研究所開發的光纖銅離子感測器之偵測範圍可由0~10 μM,而其偵測極限可達0.9 μM。此銅離子感測器具有高靈敏度、離子辨識度與化學相容性。
    另外一方面作者發展出核-殼結構奈米粒子(core-shell nanoparticles)用於氨氣感測,利用為乳化方式將二氧化矽(SiO2)包覆於量子點(CdSe),達到單一分布核-殼結構奈米粒子,最後將核-殼結構奈米粒子加入sol-gel matrix中再將之塗佈在光纖端面。藉由螢光效率做為氨氣分子濃度檢測系統之基礎。本研究所開發的光纖氨氣感測器之靈敏度(IN2/IO2)可達42.4,在氨氣環境下(400 ppm)感測器之反應時間分別為 6.1秒(放射螢光強度由氮氣變化到氨氣之所需時間)與942.2秒(放射螢光強度由氨氣變化到氮氣之所需時間)。核殼結構奈米粒子有親水性、良好的環境相容性與光學特性。此研究可提高光纖感測系統將能提高訊噪比,而將更有效的量測及分析訊號。並且此結合將使多孔性 (mesoporous)材料能夠具有更高靈敏度及穩定性。
    除此之外,作者也提出了光纖氧氣與溫度雙感測器,其技術同樣利用熱裂解的方法合成出量子點(CdSe),並利用微乳化方法將氧氣感測材料(PtTFPP)與溫度感測材料(CdSe)同時包覆於在silica particles中形成core-shell nanoparticles,最後將core-shell nanoparticles加入sol-gel matrix中再將之塗佈在光纖端面,利用一個 LED (409nm)作為激發光源去同時激發溫度與氧氣感測材料而產生不同波段的放射螢光,在頻譜中可以同時分析量子點波長移動(Shift)所代表的溫度變化與氧氣感測材料螢光強度衰減(Quenching)所代表的氧氣濃度變化,並且在頻譜中不會有串音的現象發生,進而去同時分析當時之溫度與氧氣濃度。本研究所開發的光纖氧氣感測器之靈敏度(IN2/IO2)可達18,感測器之反應時間分別為 0.37秒(放射螢光強度由100%氮氣變化到100%氧氣之所需時間)與4.7秒(放射螢光強度由100%氧氣變化到100%氮氣之所需時間)。

    In recent years, quantum dots (QDs) have emerged as one of the promising fluorescent sensor owing to their relatively high quantum yields, broad absorption spectra, unique narrow emission, and good photostability. The optical property of QDs is strongly dependent on the property of the surface states, as well as chemical and physical environment. The surface interaction between analytes and QDs will influence the efficiency of the electron–hole recombination process as the presence of the target molecular can be transduction into detectable fluorescence signals.
    A novel, high-performance optical fiber sensor for Cu2+ ion is proposed based on silica-coated CdSe/ZnS nanoparticles immobilized on the tip of an optical fiber by a sol–gel matrix. The Stern-Volmer equation showed a good linear response in the range 0-10 μM with the correlation coefficient of R2=0.9858. The resolution of this sensor detected by a commercial hand-held spectrometer was about 0.9 μM and therefore it is an ideal solution for applications in chemical and medical detections. The use of a silica-coated CdSe/ZnS QD has a number of key advantages as compared to the organic ligand modified QDs, including better selectivity, higher sensitivity, better chemical stability, and more stable with wide pH value.
    On the other hand, the author developed a high-performance ammonia vapor sensor is proposed comprising CdSe/SiO2 core-shell nanoparticles embedded in a sol-gel matrix immobilized on the tip of an optical fiber. The experimental results have shown that the sensor exhibits a linear response for ammonia vapor concentrations in the range of 0 ~ 400 ppm. Furthermore, it has been shown that the sensor has a response (I0/I) of approximately 42.4 when exposed to ammonia vapor with a concentration of 400 ppm under room temperature conditions. Finally, it has been shown that the sensor has a response time of 6.1 s when switching from pure N2 to a mixed N2 – ammonia vapor with an ammonia concentration of 400 ppm and 942.2 s when switching in the reverse direction. Overall, the results show that the proposed sensor has many key advantages compared to optical sensors based on organic sensitive dye, including a higher response (I0/I), an improved chemical stability, and full reversibility.
    Furthermore, the author developed a simple, low-cost optical-fiber sensor has been proposed for the dual sensing of temperature and oxygen concentrations. The sensor comprises PtTFPP-doped CdSe/SiO2 nanoparticles immobilized in a TFP-TriMOS) composite xerogel. The PtTFPP dye provides an oxygen sensing function, while the CdSe/ SiO2 nanoparticles provide a temperature sensing function. Both indicators are excited using a single wavelength of 409 nm. It has been shown that the response (I0/I) of the dual sensor is approximately 18 under room temperature conditions. The response time was 0.37 s when switching from nitrogen to oxygen, and 4.7 s when switching in the reverse direction. In conclusion, the dual sensor developed in this study provides a simple and accurate solution for the simultaneous non-contact sensing of temperature and oxygen, and is therefore expected to find use in a variety of environmental and medical sensing applications.

    中文摘要 I Abstract III 致謝 V Table of Contents VI List of Figures X List of Tables XIV Chapter 1 Introduction 1 1.1 Optical metal ion sensors 1 1.2 Optical ammonia vapor sensors 4 1.3 Optical oxygen and temperature sensor 5 1.4 Dissertation preview 7 Chapter 2 Optical Metal Ion Sensors 10 2.1 Experimental section 10 2.1.1 Material preparation 10 2.1.2 Synthesis of core-shell CdSe/ZnS QDs 10 2.1.3 Synthesis of water-soluble silica-coated CdSe/ZnS QDs 11 2.1.4 Preparation of silica-coated CdSe/ZnS QDs in PVA matrix 12 2.2 Instrumentation 12 2.3 Structure and optical characterizations of the silica-coated CdSe/ZnS QDs 13 2.3.1 Structure analysis of the silica-coated CdSe/ZnS QDs 13 2.3.2 Optical properties of silica-coated CdSe/ZnS QDs 16 2.4 Analytical performance of silica-coated CdSe/ZnS QDs 18 2.5 Mechanism of sensing 20 2.6 Effect of different metal ions on fluorescence intensity of silica-coated CdSe/ZnS QDs 22 2.7 Interference of metal ions on Cu2+ determination 23 2.8 Comparisons with existing Cu2+ ion sensors 24 2.9 Summary 25 Chapter 3 Optical Ammonia Vapor Sensors 27 3.1 Experimental section 27 3.1.1 Materials 27 3.1.2 Synthesis of CdSe QDs 27 3.1.3 Synthesis of CdSe/SiO2 core-shell nanoparticles 28 3.1.4 Preparation of CdSe/SiO2 core-shell nanoparticles in sol-gel matrix 28 3.2 Experimental setup 29 3.3 Results and discussion 30 3.3.1 Structural and optical characterization of CdSe/SiO2 core-shell nanoparticles 30 3.3.2 Detection performance of proposed ammonia vapor sensor 34 3.3.3 Response time of ammonia vapor sensor 36 3.3.4 Selectivity and photostability of ammonia vapor sensor 37 3.3.5 Effect of relative humidity (RH) of ammonia vapor sensor 39 3.4 Summary 40 Chapter 4 Optical Fiber Dual Sensor 42 4.1 Experimental Section 42 4.1.1 Materials 42 4.1.2 Synthesis of CdSe QDs 42 4.1.3 Preparation of core-shell CdSe/SiO2 nanoparticles 43 4.1.4 Preparation of PtTFPP-doped nanoparticles and sol-gel processes 44 4.2 Instrumentation 46 4.3 Results and discussion 47 4.3.1 Surface characterization of PtTFPP-doped CdSe/SiO2 nanoparticles 47 4.3.2 Optical properties of PtTFPP-doped CdSe/SiO2 nanoparticles 48 4.3.3 Temperature sensing performance of dual sensor 49 4.3.4 Oxygen sensing performance of dual sensor 50 4.3.5 Response time of oxygen sensor 53 4.4 Summary 55 Chapter 5 Optical Oxygen Sensor 57 5.1 Theory 57 5.2 Experimental section 58 5.2.1 Fabrication of two optical fiber oxygen sensors 58 5.2.2 Synthesis of monodisperse SiO2 solid spheres 58 5.2.3 Synthesis of metal-coated silica nanoparticles 59 5.2.4 Sol-gel, mixing, and dipping processes 60 5.3 Instrumentation 61 5.4 Results and discussion 62 5.4.1 Oxygen sensing properties of Pt(II)-doped sensors 62 5.4.2 Response time of Pt(II)-doped oxygen sensors 64 5.5 Photostability of Pt(II)-doped oxygen sensors 67 5.6 Summary 68 Chapter 6 Conclusions and Future Works 69 6.1 Conclusions 69 6.2 Future works 70 Reference 72 Autobiography 87

    Airoudj A., Debarnot D., Beche B. and Poncin-Epaillard F., Development of an optical ammonia sensor based on polyaniline/epoxy resin (SU-8) composite, Talanta, 77 (2009) 1590-1596.

    Ammonia Workshop, Natural Atmospheric Deposition Program, Washington, DC, October 2003, pp. 22–24.

    Amao Y., Probes and polymers for optical sensing of oxygen, Microchim. Acta 143 (2003) 1-12.

    Amao Y., Miyashita T. and Okura I., Platinum tetrakis(pentafluorophenyl)porphyrin immobilized in polytrifluoroethylmethacrylate film as a photostable optical oxygen detection material, J. Fluor. Chem. 107 (2001) 101-106.

    Angelis R. De., Casalboni M. and Hatami F., A. Ugur, W.T. Masselink, P. Prosposito, Vapour sensing properties of InP quantum dot luminescence, Sensors and Actuators B: Chemical 162 (2012) 149–152.

    Asfura K.M.G. and Leblanc R.M., Peptide coated CdS quantum dots for the optical detection of copper (II) and silver (II), Chem. Commun. (2003) 2684–2685.

    Baleizão C., Nagl S., Schäferling M., Berberan-Santos M.N., and Wolfbeis O.S., Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity, Anal. Chem. 80 (2008) 6449-57.

    Basu B. J., Optical oxygen sensing based on luminescence quenching of platinum porphyrin dyes doped in ormosil coatings, Sens. Actuators B Chem., 123 (2007) 568-577.

    Borisov S.M. and Wolfbeis O.S., Temperature-sensitive europium(III) probes and their use for simultaneous luminescent sensing of temperature and oxygen, Anal. Chem. 78 (2006) 5094–5101.

    Borisov S.M., Vasylevska A.S., Krause C. and Wolfbeis O.S., Composite luminescent material for dual sensing of oxygen and temperature, Adv. Funct. Mater. 16 (2006) 1536-1542.

    Büchner W., Schliebs R., Winter G. and Büchel K.H., Industrial Inorganic Chemistry, VCH, Weinheim, (1989).

    Bullen C. and Mulvaney P., The effects of chemisorption on the luminescence of CdSe quantum dots, Langmuir 22 (2006) 3007-3013.

    Chang W. B. and Li K. A., General Handbook of Analytical Chemistry, 1st ed., Peking University Publication, Beijing, China, 1981.

    Chen J., Zheng A., Gao Y., He C., Wu G., Chen Y., Kai X. and Zhu C., Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution, Spectrochimica Acta Part A, 69 (2008) 1044-1052.

    Chen Q., Zhou T., He C., Jiang Y. and Chen X., An in situ applicable colorimetric Cu2+ sensor using quantum dot quenching, Anal. Methods 3 (2011) 1471–1474.

    Chen Y.F. and Rosenzweig Z., Luminescent CdS quantum dots as selective ion probes, Anal. Chem. 74 (2002) 5132–5138.

    Chen J., Gao Y., Xu Z., Wu G., Chen Y. and Zhu C., A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters, Anal Chim Acta. 577 (2006) 77-84.

    Chen D., Liu H. Y., Liu J. S., Ren X. L., Men, X. W., Wu, W. and Tang F. Q., A general method for synthesis continuous silver nanoshells on dielectric colloids, Thin Solid Films 516, (2008) 6371-6376.

    Chu C. S. and Lo Y. L., Highly sensitive and linear calibration optical fiber oxygen sensor based on Pt(II) complex embedded in sol-gel matrix , Sens. Actuators B Chem., 155 (2011) 53-57.

    Chu C.S. and Lo Y.L., A plastic optical fiber for the dual sensing of temperature and oxygen, IEEE Photonic Technol. Lett. 20 (2008) 63–65.

    Chu C.S. and Lo Y.L., High performance fiber optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes, Sens. Actuators B: Chem. 124 (2007) 376–382.

    Chu C.S., Lo Y.L. and Sung T.W., Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core–shell silica nanoparticles embedded in sol–gel matrix, Talanta 82 (2010) 1044–1051.

    Chu C. S. and Lo Y. L., Highly Sensitive and Linear Optical Fiber Carbon Dioxide Sensor Based on Sol-Gel Matrix Doped with Silica Particles and HPTS, Sens. Actuators B Chem. 143 (2009) 205-210.

    Close L.G., Catlin F.I. and Cohn A.M., Acute and chronic effects of ammonia burns on the respiratory track, Arch. Otolaryngol 106 (1980) 151–158.

    David R. L., Handbook of Chemistry and Physics, 78th edition, (1998).

    Demas J. N., DeGraff B. A. and Xu W., Modeling of luminescence quenching based sensors comparison of multisite and nonlinear gas solubility models, Anal. Chem. 67 (1995) 1377-1380.

    Dong C., Qian H., Fang N. and Ren J., Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy, J. Phys. Chem. B 110 (2006) 11069–11075.

    Dubas S. and Pimpan V., Green synthesis of silver nanoparticles for ammonia sensing, Talanta, 76 (2008) 29-33.

    Ferraro J.R. and Mh Manghnan., Infrared absorption spectra of sodium silicate glasses at high pressures, J. Appl. Phys. 43 (1972) 4595-4599.

    Fostener U. and Wittmann G.T., Metal Pollution in Aquatic Environment, Springer, Berlin, Heidelberg, New York, 1981, pp. 08–12.

    Frasco M.F., Vamvakaki V. and Chaniotakis N., Porphyrin decorated CdSe quantum dots for direct fluorescent sensing of metal ions, J. Nanopart. Res. 12 (2010) 1449-1458.

    Gandolfi M.G., Taddei P., Tinti A., Dorigo D.S.E., Rossi P.L. and Prak C., Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions, Clinical Oral Investigation, 14 (2010) 659-668.

    Gerion D., Pinaud F., Williams S.C., Parak W.J., Zanchet D., Weiss S. and Alivisatos A.P., Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B 105 (2001) 8861–8871.

    Green M., Harwood H., Barrowman C., Rahman P., A facile route to CdTe nanoparticles and their use in bio-labelling, J. Mat. Chem. 17 (2007) 1989–1994.

    Grupta R. and Chaudhury N.K., Entrapment of biomolecules in sol–gel matrix for applications in biosensors: Problems and future prospects, Biosensors and Bioelectronics 22 (2007) 2387–2399.

    Gu F., Li C.Z., Wang S.F. and Lu M.K., Solution-phase synthesis of spherical Zinc Sulfide nanostructures, Langmuir 22 (2006) 1329-1332.

    Hassan C.M. and Peppas N.A., Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods, Adv. Polym. Sci. 153 (2000) 37–65.

    Hernandez S. C., Chaudhuri D., Chen W., Myung N. and Mulchandani V. A., Single polypyrrole nanowire ammonia gas sensor, Electroanalysis 19 (2007) 2125-2130.

    Hung L., Rao G., Loureiro J. and Tolosa L., Dual optical sensor for oxygen and temperature based on the combination of time domain and frequency domain techniques, Talanta 84 (2011) 65-70.

    Ingole P.P., Abhyankar R.M., Prasad B.L.V. and Haram S. K., Citrate-capped quantum dots of CdSe for the selective photometric detection of silver ions in aqueous solutions, Materials Science and Engineering B. 168 (2010) 60-65.

    Isarov A. V.and Chrysochoos J., Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper (II) ions, Langmuir 13 (1997) 3142-3149.

    Iwasaki K., Torimoto T., Shibayama T., Takahashi H. and Ohtani B., Preparation and characterization of water-soluble jingle-bell-shaped silica-coated cadmium sulfide nanoparticles, J. Phys. Chem. B 108 (2004) 11946-11952.

    Jin L., Yu D.D., Liu Y., Zhao X.L. and Zhou J.G., The application of CdTe@SiO2 particles in immunoassay, Talanta 76 (2008) 1053–1057.

    Jorge P.A.S., Maule C., Silva A.J., Benrashid R., Santos J.L. and Farahi F., Dual sensing of oxygen and temperature using quantum dots and a ruthenium complex, Analytica Chimica Acta 606 (2008) 223-229.

    Jorge P.A.S., Mayeh M., Benrashid R., Caldas P., Santos J.L. and Farahi F., Applications of quantum dots in optical fiber luminescent oxygen sensors, Applied Optics 45 (2006) 3760-3766.

    Jorge P.A.S., Mayeh M., Benrashid R., Caldas P., Santos J.L. and Farahi F., Quantum dots as self-referenced optical fiber temperature probes for luminescent chemical sensors, Meas. Sci. Technol. 17 (2006) 1032-1038.

    Kawashima S. and Yonemura S., Measuring ammonia concentration over a grassland near livestock facilities using a semiconductor ammonia sensor, Atm. Env. 35 (2001) 3831–3839.

    Klessinger M. and Michl J., In excited states and photochemistry of organic molecules; VCH Publishers: New York, 1995; pp 297-301.

    Koneswaran M. and Narayanaswamy R., Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II), Sens. Actuators B Chem. 139 (2009) 91-96.

    Kose M.E., Carroll B.F. and Schanze K. S., Preparation and spectroscopic properties of a dual luminophore pressure sensitive paint, Langmuir 21 (2005) 9121-9129.

    Lai Y., Yu Y., Zong P. and Wu J., Development of novel quantum dots as fluorescent sensors for application in highly sensitive spectrofluorimetric determination of Cu2+, Anal. Lett. 39 (2006) 1201–1209.

    Landes C., Burda C., Braun M. and El-Sayed M.A., Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-butylamine, J Phys Chem B. 105 (2001) 2981–6.

    Lakowicz J.R. Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/ Plenum Press, New York, (1999) chapters 8 and 9.

    Lee S.K. and Okura I., Photostable optical oxygen sensing material: platinum tetrakis (pentafluorophenyl)porphyrin immobilized in polystyrene, Anal. Commun. 34 (1997) 185-188.

    Leong Y.K., Yield stress and zeta potential of nanoparticulate silica dispersions under the influence of adsorbed hydrolysis products of metal ions Cu(II), Al(III) and Th(IV), J. Colloid Interface Sci. 292 (2005) 557–566.

    Li H.B. Zhang Y., Wang X. Q. and Gao Z. A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots, Microchim Acta. 160 (2008) 119-123.

    Li J.J., Wang Y.A., Guo W., Keay J.C., Mishima T.D., Johnson M.B. and Peng X., Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction, J. Am. Chem. Soc. 125 (2003)12567-12575.

    Li H. B. and Wang X. Q., Single quantum dot-micelles coated with gemini surfactant for selective recognition of a cation and an anion in aqueous solutions. Sens. Actuators B 134 (2008) 238—244.

    Liang G. X., Liu H. Y., Zhang J. R. and Zhu J. J., Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots, Talanta 80 (2010) 2172-2176.

    Liang J.G., Ai X.P., He Z.K., Pang D.W., Functionalized CdSe quantum dots as selective silver ion chemodosimeter, Analyst. 129 (2004) 619-622.

    Lin J. and Brown C. W., Sol-gel glass as a matrix for chemical and biochemical sensing, Trac. Trend. Anal. Chem. 16 (1997) 200-211.

    Liu F. C., ChenY. M., Lin J. H. and Tseng W. L., Synthesis of highly fluorescent glutathione-capped ZnxHg1−xSe quantum dot and its application for sensing copper ion, J. Colloid Interface Sci. 337 (2009) 414–419.

    Ma X.F., Suna J.Z., Wang M. Hub M Li G, Chena H.Z. and Huang J., Effects of fluorination in the ring of zinc tetraphenylporphyrin on its gas-response to volatiles at room temperature, Sens. Actuators B: Chem. 114 (2006) 1035-1042.

    Maule C., Goncalvea H., Mendonca C., Sampaio P., Esteves da Silva J.C.G. and Jorgeb P., Wavelength encoded analytical imaging and fiber optic sensing with pH sensitive CdTe quantum dots, Talanta 80 (2009) 1932-1938.

    Medintz I. L., Uyeda H. T., Goldman E. R. and Mattoussi H., Quantum dot bioconjugates for imaging, labeling and sensing, Nat. Mater. 4 (2005) 435 – 446.

    Mitsuo K., Asai K., Takahashi A. and Mizushima H., Advanced lifetime PSP imaging system for pressure and temperature field measurement, Meas. Sci. Technol. 17 (2006) 1282–1219.

    Mongey K.F., Vos J.G., MacCraith B.D., McDonagh C.M., Coates C. and McGarvey J.J., Photophysics of mixed-ligand polypyriyl; ruthenium(II) complexes immobilized in silica sol-gel monoliths, J. Mater. Chem. 7 (1997) 1473-1479.

    Nann T. and Mulvaney P., Single quantum dots in spherical silica particles, Angew. Chem. Int. Ed. 43 (2004) 5393–5396.

    Nazzal A.Y., Wang X., Qu L., Yu W., Wang Y., Peng X. and Xiao M., Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films, J. Phys. Chem. B 108 (2004) 5507–5515.

    Renganathan B., Sastikumar D., Gobi G., Rajeswari Y.N. and Chandra B.A., Nanocrystalline ZnO coated fiber optic sensor for ammonia gas detection, Optics and Laser Technology 43 (2011) 1398-1404.

    Santra S., Zhang P. and Wang K.M., Conjugation of Biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers, Anal. Chem. 73 (2001) 4988-4993.

    Shang Y., Wang X., Xu E., Tong C. and Wu J., Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye, Anal Chim Acta. 24 (2011) 58-64.

    Shang L. and Dong S. J., Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). J Mater Chem 18 (2008) 4636–4640.

    Sharma S. N., Pillai Z. S.and Kamat P. V., Photoinduced charge transfer between CdSe nanocrystals and p-phenelenediamine, J. Phys. Chem. B 107 (2003) 10088-10093.

    Shen H.B., Wang H.Z. and Tang Z.J., High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method, CrystEngComm. 11 (2009) 1733-1738.

    Spanhel L., Haase M., Weller H. and Henglein A., Photochemistry of colloidal semiconductors. Surface modification and stability of strong luminescing CdS particles, J. Am. Chem. Soc. 109 (1987) 5649-5655.

    Stich M.I., Nagl S., Henne U., Wolfbeis O.S. and Schäferling M., A dual fluorescent sensor material for simultaneous imaging of pressure and temperature on surfaces, Adv. Funct. Mater. 18 (2008) 1399-1406.

    Stöber W., Fink A. and Bohn E., Controlled growth of monodisperse silica spheres in micron size range, J. Colloid Interface Sci. 26 (1968) 62-69.

    Sun J., Zhuan, J.Q., Guan S.W. and Yang W.H., Synthesis of robust water-soluble ZnS:Mn/SiO2 core/shell nanoparticles, J Nanopart Res 10 (2008) 653–658.

    Sung T.W. and Lo Y.L., Dual sensing of temperature and oxygen using PtTFPP-doped CdSe/SiO2 core-shell nanoparticles, Sensors and Actuators B: Chemical 173 (2012) 406–413.

    Sung T.W. and Lo Y.L., Highly sensitive and selective sensor based on silica-coated CdSe/ZnS, Sensors and Actuators B: Chemical 165 (2012) 119-125.

    Sutar D.S., Padma N., Aswal D.K., Deshpande S.K. Gupta S.K. and Yakhmi J.V., Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor, Sensors and Actuators B: Chemical 128 (2007) 286–292.

    Tang B., Nui J., Yu, C., Zhuo L. and Ge J., Highly luminescent water-soluble CdTe nanowires as fluorescent probe to detect copper (II), Chem. Commun. (2005) 4184-4186.

    Tripathi V.S., Lakshminarayana G. and Nogami M., Optical oxygen sensors based on platinum porphyrin dyes encapsulated in ORMOSILS, Sens. Actuators B: Chem. 147 (2010) 741-747.

    Uauy R., Olivares M. and Gonzalez M., Essentiality of copper in humans, Am. J. Clin. Nutr. 67 (1998) 952S-959S.

    Van Sark W.G.J.H.M., Frederix P.L.T.M., Van den Heuvel D.J. and Gerritsen H.C., Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy, J. Phys. Chem. B 105 (2001) 8281-8284.

    Waich K., Borisov S., Mayr T. and Klimant I., Dual lifetime referenced trace ammonia sensors, Sensors and Actuators B: Chemical 129 (2009) 132-138.

    Wang X.D., Chen X., Xie Z.X. and Wang X.R., Reversible optical sensor strip for oxygen, Angew. Chem. Int. Ed. 120 (2008) 7560-7563.

    Wang Q., Kun Y. C., Wang Y. W., Shin G., Ruengruglikit C. and Huang Q. R., Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots, J. Phys. Chem. B 100 (2006) 16860–16866.

    Warneck P., Chemistry of the Natural Atmosphere, Academic Press Inc., (1998).

    Wolcott A., Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins, J. Phys. Chem. B 110 (2006) 5779-5789.

    Xia K., Mehadi A., Taylor R.W. and Bleam W.F., X-ray absorption and electron paramagnetic resonance studies of Cu(II) sorbed to silica: surface-induced precipitation at low surface coverages, J. Colloid. Interface Sci. 185 (1997) 252-257.

    Xu W., McDonough R. C., Langsdorf B., Demas J. N. and DeGraff B. A., Oxygen sensors based on luminescence quenching: interactions of metal complexes with the polymer supports, Anal. Chem. 66 (1994) 4133–4141.

    Yang Y.H., Jing L.H. and Yu X.L., Coating aqueous quantum dots with silica via reverse microemulsion method: toward size-controllable and robust fluorescent nanoparticles, Chem. Mater. 19 (2007) 4123-4128.

    Yang Y.H. and Gao M.Y., Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method, Adv. Mater. 17 (2005) 2354–2357.

    Yeh T. S., Chu C. S., Lo Y. L., Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices, Sens. Actuators B Chem. 119 (2006) 701-707.

    Zhao X., Bagwe R.P. and Tan W., Development of organic-dye-doped silica nanoparticles in a reverse microemulsion, Adv. Mater. 16 (2004) 173-176.

    Zhang Y.X., Pan S.S., Teng X.M., Luo Y.Y. and Li G.G., Bifunctional magnetic−luminescent nanocomposites: Y2O3/Tb nanorods on the surface of iron oxide/silica core−shell nanostructures, J. Phys. Chem. C 112 (2008) 9623–9626.

    Zhang H.D., Sun Y.H., Ye K.Q., Zhang P. and Wang Y., Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(II)- porphyrin complexes, J. Mater. Chem. 15 (2005) 3181–3186.

    Zheng J. J., Yuan X. and Ikezawa, M., Efficient photoluminescence of Mn2+ ions in MnS/ZnS core/shell quantum dots, J. Phys. Chem. C 113 (2009) 16969–16974.

    Zrazhevskiy P., Sena M. and Gao X., Designing multifunctional quantum dots for bioimaging, detection, and drug delivery, Chem. Soc. Rev. 39 (2010) 4326 - 4354.

    無法下載圖示 校內:2019-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE